

Preliminary Site Investigation

CSO Engineers

'TAMINDA BUSINESS & LIFESTYLE PARK'

LVL 2 UNIT 10 1A WIRRAWAY STREET TAMINDA,

NEW SOUTH WALES,

2340 Australia

January 2023.

😂 admin@mossenviro.com

- 🔄 www.mossenviro.com
- ☆ PO Box 390, Tamworth NSW 2340

Document Control

Rev	Date	Prepared by	Reviewed by	Approved by	Remarks
Rev A	12/12/2022	Elizabeth Ogunsote	Shonelle Gleeson-Willey	Shonelle Gleeson Willey	Draft for comment
Rev 0	22/12/2022	Elizabeth Ogunsote	Elizabeth Ogunsote	Shonelle Gleeson Willey	Draft for comments from client
Rev 1	18/1/2023	Elizabeth Ogunsote	Shonelle Gleeson Willey	Shonelle Gleeson Willey	Issued as Final

😂 admin@mossenviro.com

- 🔀 www.mossenviro.com
- ☆ PO Box 390, Tamworth NSW 2340

DISCLAIMER

This information is to be used only for its intended purpose and should be read in conjunction with the relevant legislation. For more information, contact Moss Environmental Pty Ltd.

PUBLICATION DETAILS

Published by Moss Environmental 2023

PO Box 390 Tamworth NSW 2340

Australia

CONTACT US

Inquiries regarding the use of this document are welcome at:

Moss Environmental

PO Box 390

Tamworth NSW 2340

Ph: 0419 444 669

Email: admin@mossenviro.com.au

😂 admin@mossenviro.com

- 🗲 www.mossenviro.com
- ☆ PO Box 390, Tamworth NSW 2340

Table of Contents

EXECU	ITIVE SUMMARY	7
1. IN	NTRODUCTION	9
1.1	PROJECT BACKGROUND	
1.2	PROJECT OBJECTIVES	
1.3	Scope of Works	
1.4	CONSULTANCY COMPETENCY	
2. SI	ITE CONDITIONS	11
2.1	SITE IDENTIFICATION	
2.2	Surrounding Land Use	15
2.3	TOPOGRAPHY	15
2.4	GEOLOGY	17
2.5	Hydrogeology	19
2.6	FLOOD POTENTIAL	23
2.7	Underground Utilities	25
2.8	Acid Sulphate Soils and Salinity	25
3. SI	ITE BACKGROUND	27
3.1	Previous Studies	
3.2	Site History	
3.	.2.1 Current and historical title deeds	
3.	.2.2 Historical Aerial Photographs	
3.	.2.3 Tamworth Historical Society Archives	
3.	.2.4 NSW OEH Contaminated Land databases	
3.	.2.5 POEO Act 1997 Register	
3.	.2.6 Tamworth Regional Planning Certificates	
3.	.2.7 Site History Summary	
3.3	SITE DESCRIPTION AND SURROUNDING ENVIRONMENT	
3.4	POTENTIAL AREAS OF ENVIRONMENTAL CONCERN AND CONTAMINANTS OF CONCERN	
3.5	CONCEPTUAL SITE MODEL	
4. S/	AMPLING AND ANALYSIS QUALITY PLAN AND SAMPLING METHODOLOGY	41
4.1	DATA QUALITY OBJECTIVES	
4.2	Sampling Methodology	
4.3	QUALITY ASSURANCE/QUALITY CONTROL DATA EVALUATION	45
4.	.3.1 Field QA/QC	
4.	.3.2 Laboratory QA/QC	
4.	.3.3 Data Evaluation	
5. R	ESULTS	
5.1	Assessment Criteria	

 😂 admin@mossenviro.com

- 🗲 www.mossenviro.com
- ♠ PO Box 390, Tamworth NSW 2340

5	5.2	REVIEW OF ANALYTICAL DATA	49
6.	CON	ICLUSIONS	56
e		CONCLUSION	
е	5.2	RECOMMENDATIONS	
е	5.3	LIMITATIONS	57
7.	REFE	ERENCE LIST	59
8.	APP	ENDICES	60
		IDIX A – LOT SEARCH RESULT	
		IDIX B – BYDA searches	-
		IDIX C – NSW EPA Contaminated Land Record	
		IDIX D – LABORATORY RESULTS IDIX E – LOGIT DIGITAL SOIL LOGS	

List of Tables

Table 2-1: Site identification details	. 11
Table 2-2: Closest groundwater boreholes to site (within 1km)	. 20
Table 3-1: Historical aerial photo description	. 28
Table 3-2: Summary of Area of Environmental Concern (AEC)	. 37
Table 3-3: Identification of sources considered to inform the conceptual site model.	. 40
Table 4-1: Sampling Locations	. 44
Table 4-2: Summary of Data Quality Indicators for Example Contamination Assessment	. 45
Table 4-3: RPD Calculations	. 47
Table 5-1: HILs and HSLs for low density residential soil	. 48
Table 5-2: Analytes above the laboratory Limit of Reporting	. 52
Table 5-3: Salinity classes and trigger value for plant absorption	. 54
Table 5-4: Estimated salinity conversion to calculate plant absorption values	. 54

List of Figures

Figure 2-1: A map showing the Site location	11
Figure 2-2: An image showing the suburbs of proposal (Sites A and B in green and red shades respectively)	12
Figure 2-3: Land zoning map of the site	13

😂 admin@mossenviro.com

- 🔁 www.mossenviro.com
- ☆ PO Box 390, Tamworth NSW 2340

Figure 2-4: Land Use map (site in red outline)	14
Figure 2-5: NSW Topography map from NSW SEED. (Site A in red shade, Site B in green shade)	16
Figure 2-6: An image showing the Burkes Gully and Timbumburi Creek	17
Figure 2-7: Map showing the Australian Soil Classification of the sites to be Chromosols.	18
Figure 2-8: Mitchell landscape grouping for the Site	19
Figure 2-9: An image showing the closest groundwater boreholes works around the site	20
Figure 2-10: Photos showing water logging characteristics on Site A	22
Figure 2-11: Hydroline data of the site and environs	23
Figure 2-12: Flood planning Areas around the site	24
Figure 2-13: Images showing overhead poles on site	25
Figure 2-14: Salinity evidence around the site	26
Figure 3-1: Image showing previous PSI study area ⁴	27
Figure 3-2: Images showing site conditions	34
Figure 3-3: Images showing conditions of additional lot	36
Figure 3-4: AECs identified from the previous report	37
Figure 3-5: Conceptual Site Model (CSM)	39
Figure 4-1: A map showing the sampling locations used during the site investigation.	43

😂 admin@mossenviro.com

- 🔁 www.mossenviro.com
- ☆ PO Box 390, Tamworth NSW 2340

EXECUTIVE SUMMARY

CSO Engineers commissioned Moss Environmental Pty Ltd to conduct a Preliminary Site Investigation (PSI, also known as a Phase 1 Environmental Assessment) on Lot 1 and 2 DP1213875 referred to as Site A, and an additional area of concern on Lot 1 DP 233288 referred to as Site B in this report. The site is currently being used as a farm for grazing. The site is proposed to be developed into a residential estate therefore, the investigative levels used in this report are human health based using the low-density residential scenario (HIL-A).

The objectives of this report are to review the site history and to collect limited soil and water samples to create a timeline of the site historical information. This is to identify if there have been historical activities on the site that have the potential to cause contamination, to identify contaminants of potential concern (CoPC) and to inform on the need for additional investigations. In addition to investigating anthropogenic causes of contamination, this investigation assesses the possible extent of salinity occurrence on the site.

The findings of the report are based on a site inspection conducted over two days: 15/11/2022 and 16/11/2022, a review of historical site data, and limited surface soil and water samples collected.

The historical searches and lot searches completed for this report have an adequate buffer in place to cover all lots for the study (Lot 1 and 2 DP1213875 and Lot 1 DP 233288) throughout this report.

The scope of work included the following:

- A site history review and site visit to identify potential Areas of Environmental Concerns (AECs) and chemicals of concern (CoCs) and;
- Assessment of the need for additional investigation based on the site history review and limited surface soil and water sampling consisting of:
 - Twenty (20) topsoil samples and 2 quality control samples collected using a Jarrett auger and analysed at a NATA accredited laboratory for Salinity, pH, Sodium, Heavy Metals, BTEX, TRH, PAHs and OCPs;
 - One (1) surface water sample collected via a grab sample.

Surface soil sampling was designed using a stratified sampling regime with the site divided into two discrete investigation areas, sampling strategies and sampling locations due to different characteristics of the site. Site 1 uses a judgmental sampling strategy located around areas of potential concern based on historical information and Site 2 uses low-density systematic sampling strategy with locations further apart to assess natural soil with no known contaminants (NSW EPA,2022).

Analytical results from the laboratory show that all soil analytes including salinity are below the assessment criteria for a low-density residential land use. However, groundwater was not accessible which presented sampling limitations. Surface water result was also below all assessment criteria for proposed land use.

Based on the site history review and site investigation for Site A, it is considered that;

- The site was used for grazing and farming since the 1960s and it is still being currently used for farming.
- There is evidence of a structured shed and water tank on site from the aerial imagery and was found on site during the site investigation.

😂 admin@mossenviro.com

- 🔁 www.mossenviro.com
- ☆ PO Box 390, Tamworth NSW 2340
- No dangerous goods or explosives were stored or used on the Site.
- A WorkCover Dangerous Goods licence search was conducted and returned no results.
- Surrounding lots have a history of above ground storage tank (AST) locations which poses the likelihood for offsite migration to the subject site of this report. However, the potential is regarded as low.
- Burkes Gully traverses the site boundary and due to the slope of site, will serve as a collection point for sediments.
- Surface soil salinity is recorded to occur over a distance of 500m from the eastern boundary of the site.
- The additional lot (Site B) currently has chemical storage, general waste material debris and abandoned materials on site.
- There are no notices of contamination with the council or the EPA available for the Site or surroundings.
- There is no evidence of oil spills, staining or areas of vegetation die back on the site.
- There is no evidence of old waste disposal or landfilling on site.
- No groundwater investigation has been conducted for the site of the surrounding areas.

Moss Environmental concludes that there is an overall low potential of salinity and other contaminants of concern across site. There is a low risk of further soil and groundwater contamination at the site. Although, groundwater will not be utilised by future residents of the site.

It is therefore recommended that: based on the information obtained through historical searches and the limited sampling strategy, no further investigations for contamination are required for this Site at this time. Should additional historical information become available, there will be a need to reassess this conclusion.

😂 admin@mossenviro.com

- 🔀 www.mossenviro.com
- 秴 PO Box 390, Tamworth NSW 2340

1. INTRODUCTION

1.1 PROJECT BACKGROUND

Moss Environmental Pty Ltd was commissioned by CSO Engineers to conduct a Preliminary Site Investigation (PSI), also referred to as a Phase 1 Environmental Site Assessment (ESA) of the vacant lots located at Burgmanns Lane Warral - Lot 2 DP1213875, and Bylong Road Hillvue – Lot 1 DP1213875. Both sites will be referred to as 'Site A' in this document. There is an additional lot of concern which will be included in this investigation at Lot 1 DP 233288 and will be referred to as 'Site B'.

The project entails a subdivision of the lots into residential dwellings which will be known as Arcadia Estate. Tamworth Regional Council (TRC) have requested the submission of a PSI with the Development Application. A previous Preliminary Site Investigation was conducted in 2014 for several lots within Duri Road and Bylong Road, which included Site A and Site B. The previous report will be referenced in some sections of this report.

1.2 PROJECT OBJECTIVES

The objective of the PSI was to identify potentially contaminating activities that are currently being performed at the Site, and that may have been performed in the past on the Site, with the aim to determine if additional contamination investigations are warranted prior to site development. The PSI also involves testing for salinity on the site as the surrounding area of site within a 1km buffer shows a record of strong salting evidence. This investigative report will determine if additional contamination investigations are warranted prior to site development.

1.3 SCOPE OF WORKS

In order to meet the objectives of the PSI, the following scope of works were carried out:

- Review of relevant reports and other historical documentation
- A site history review and site visit to identify potential areas of environmental concern (AECs) and contaminants of concern (CoCs)
- Preparation of a Conceptual Site Model (CSM)
- Collection of surface soil samples, surface water and groundwater if accessible
- Analyse soil and water samples using a NATA accredited laboratory
- Interpretation of laboratory results in accordance with NEPC (2013a) guidelines
- Preparation of recommendations and final conclusions from results analysis.

1.4 CONSULTANCY COMPETENCY

Moss Environmental has conducted this PSI in general accordance with the relevant NSW Department of Planning and Environment (DPE formally DPIE) and Environmental Protection Authority (EPA) guidelines such as:

- Managing Land Contamination Planning Guidelines,
- SEPP (Resilience and Hazards) 2021 (DPIE, 2021) and
- Consultants reporting on contaminated land: Contaminated land guidelines (NSW EPA 2020) respectively.

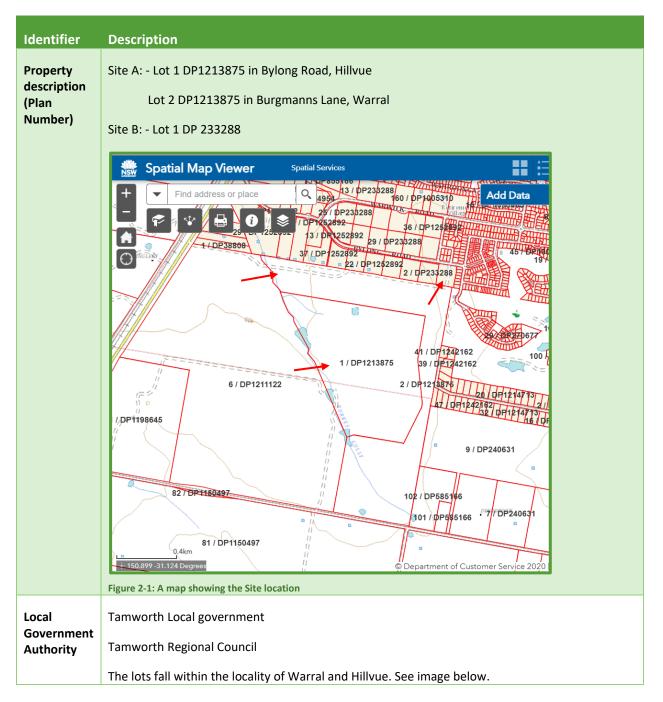
 😂 admin@mossenviro.com

- 🔁 www.mossenviro.com
- ♠ PO Box 390, Tamworth NSW 2340
- National Environment Protection (Assessment of Site Contamination) Measure 1999. NEPC 2013.

Moss Environmental is a multidisciplinary firm of environmental consultants with personnel experience and qualifications as described in National Environment Protection Measure 1999 schedule B9. Details of consultant competency can be provided if requested.

It is understood that the current investigation has been conducted for the purpose of environmental due diligence as part of a development application for the Site.

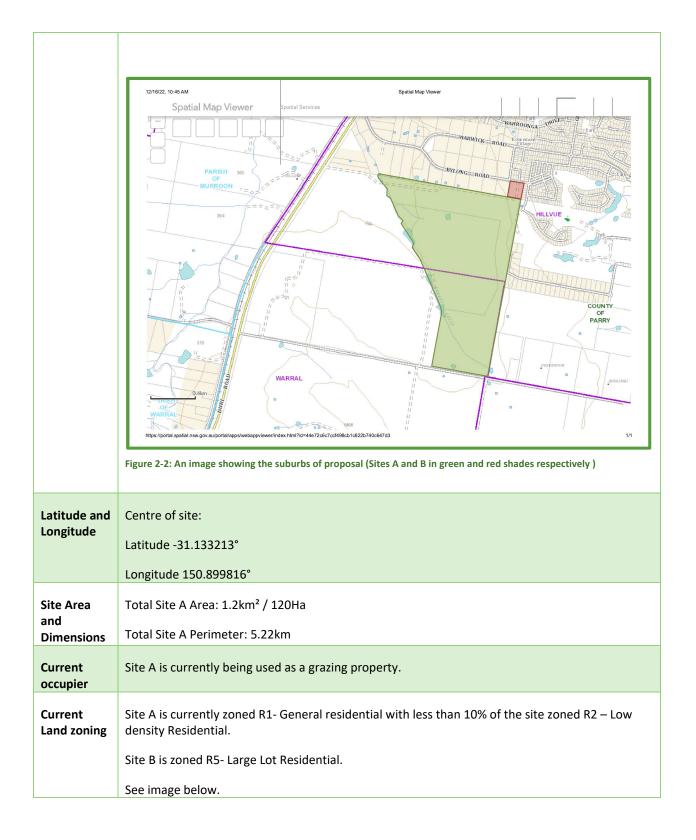
😂 admin@mossenviro.com


- 🔁 www.mossenviro.com
- 秴 PO Box 390, Tamworth NSW 2340

2. SITE CONDITIONS

2.1 SITE IDENTIFICATION

The sites can be identified with the following:


Table 2-1: Site identification details

😂 admin@mossenviro.com

- 🔁 www.mossenviro.com
- ♠ PO Box 390, Tamworth NSW 2340

📘 0419 444 669

🖶 ABN 53 126 494 776

- 😂 admin@mossenviro.com
- 🔁 www.mossenviro.com
- ♠ PO Box 390, Tamworth NSW 2340

📮 0419 444 669

🖶 ABN 53 126 494 776

- 😂 admin@mossenviro.com
- 🔀 www.mossenviro.com
- ♠ PO Box 390, Tamworth NSW 2340

😂 admin@mossenviro.com

- 🔁 www.mossenviro.com
- ☆ PO Box 390, Tamworth NSW 2340

2.2 SURROUNDING LAND USE

Based on the observations from Google earth and the site visit, the surrounding land use comprises of the following.

North- The Northern boundary of the site comprises large lot residential fronting Bylong Road. The properties were observed to have horse stables.

South- The southern lot of the Site's boundary leads to Burgmanns Lane. Across Burgmanns Lane are Primary Production small lots and further south are residential homes in the suburb of Kingswood.

East- Half of the Eastern side of the Site are Recreational lots and General residential properties on Rodeo Drive and Peak drive. The remaining half are vacant with isolated residential buildings, zoned Primary production small lots.

West- The western boundary of the site is Burkes Gully which leads to Lot 6 DP 1211122 and is currently a grazing property. Further west is the Duri Road, a rail-line and Warral Road.

2.3 TOPOGRAPHY

The Site is gently undulating, sloping from the Eastern boundary towards the Gully area, western boundary with the maximum across site being 5.3% and the minimum being 2.1%. Burkes Gully which is present on site is a first-order tributary of the Timbumburi Creek. Timbumburi Creek is approximately 1.1km from the site's western boundary. Burkes Gully is deemed to be the major surface water discharge point and run off collector for the site and nearby lots due to the topography.

😂 admin@mossenviro.com

- 🗲 www.mossenviro.com
- ♠ PO Box 390, Tamworth NSW 2340

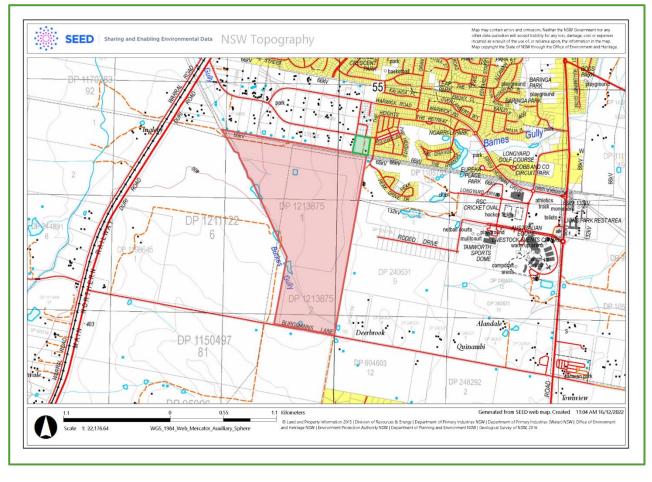


Figure 2-5: NSW Topography map from NSW SEED. (Site A in red shade, Site B in green shade)

😂 admin@mossenviro.com

- 🔁 www.mossenviro.com
- ♠ PO Box 390, Tamworth NSW 2340

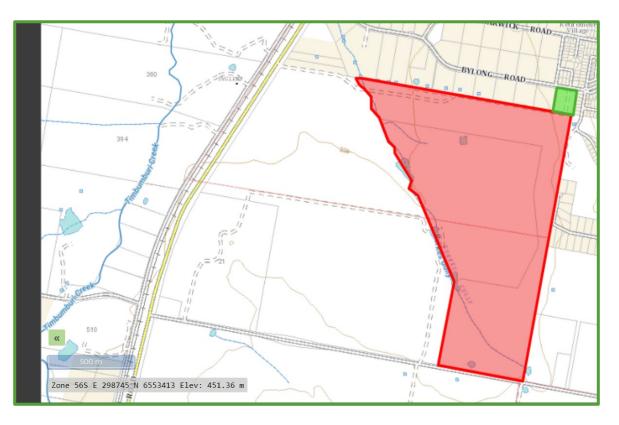


Figure 2-6: An image showing the Burkes Gully and Timbumburi Creek

2.4 GEOLOGY

Data from the MinView – Regional NSW mapping database, Australian Soil Classification Outcrop map indicates that underlying the topsoil is identified to be Chromosol soils. Chromosols are texture contrast soils between the A-and B-horizons. The B-horizon are not sodic and not strongly acidic and are therefore widely used for Agriculture particularly the red subsoils. The parent material of Chromosols ranges from highly siliceous, siliceous to intermediate in composition. These soils are found in imperfectly drained sites (yellow and grey chromosol) where rainfall is between 250mm and 900mm.¹

¹ The Australian Soil Classification, 1st ed. Available at: <u>ASC - CHROMOSOLS (csiro.au)</u>

🌐 admin@mossenviro.com

- 🔁 www.mossenviro.com
- 秴 PO Box 390, Tamworth NSW 2340

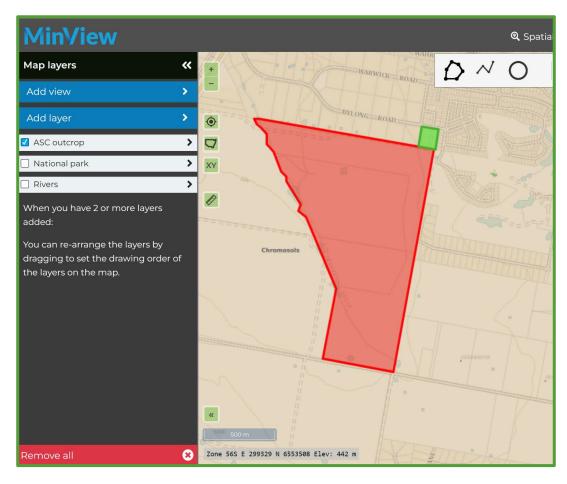


Figure 2-7: Map showing the Australian Soil Classification of the sites to be Chromosols.

The original landscape of the site is characterised by the Mitchell Landscapes as Tamworth - Keepit Slopes and Plains (Figure 2-8). These landscapes developed on rock types including Silurian-Devonian chert, schist, sandstone and small areas of limestone. These landscapes are characterised by general elevation 500 to 800m. Texture contrast soils on almost all slopes shifting in colour from red brown on upper slopes to yellow with harsh subsoils prone to gully development on lower slopes. There is various dominant vegetation across different areas on the landscape e.g., on the lower slopes, flats, eastern and western regions. For example, White box (*Eucalyptus albens*) grassy woodlands, yellow box (*Eucalyptus melliodora*), River oak (*Casuarina cunninghamiana*), Blakely's red gum (*Eucalyptus blakelyii*) Rough barked apple (*Angophora floribunda*) etc.

0419 444 669

- 🖶 ABN 53 126 494 776
- 😂 admin@mossenviro.com
- 🔀 www.mossenviro.com
- 秴 PO Box 390, Tamworth NSW 2340

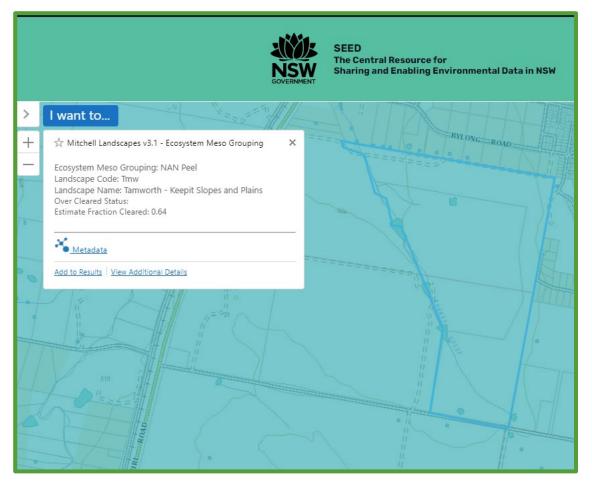


Figure 2-8: Mitchell landscape grouping for the Site

2.5 HYDROGEOLOGY

The hydrogeology Map of Australia by Geoscience of Australia shows there are two descriptions of aquifers on The Site, and they are:

- Porous and extensive highly productive aquifers
- Fractured or fissured, extensive aquifers of low to moderate productivity.

A search conducted by Lotsearch (**Appendix A**) indicates that there are 190 groundwater bores within a 2km buffer of the site. The Water NSW database- "All Groundwater Sites" details was also checked to identify the groundwater bores closest to the site and the results have been mapped out below. There are no groundwater bores identified on the site, but the shallowest groundwater well (GW003359) has a standing level of 18.60m at coordinates 31°07'59.3"S 150°53'19.1"E. The bore is 750m west of the Site boundary however, the bore was not located at the recorded coordinates during the site visit and may have been decommissioned. Table 2-2 below shows the groundwater bores closest to the site.

 😂 admin@mossenviro.com

- 🔁 www.mossenviro.com
- ♠ PO Box 390, Tamworth NSW 2340

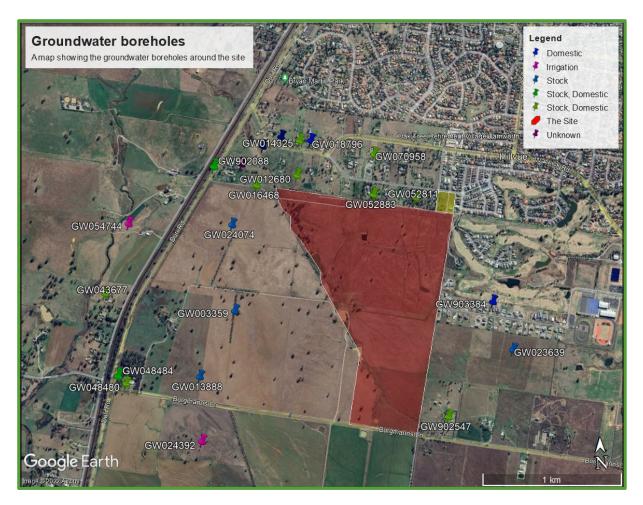


Figure 2-9: An image showing the closest groundwater boreholes works around the site

Table 2-2: Closest groundwater boreholes to site (within 1km)

Groundwater id	Coordinates	Purpose	Depth	Distance to the Site
GW003359	31°07'59.3"S	Stock	18.60m	750m West
	150°53'19.1"E			
GW024074	31°07'39.3"S	Stock	36.6m	423m West
	150°53'19.1"E			
GW016468	31°07'30.3"S	Stock, Domestic	28.3m	139m West
	150°53'26.1"E			
GW902574	31°07'28.3"S	Stock, Domestic	34.7m	207m East
	150°53'16.1"E			
GW902088	31°07'27.3"S	Stock, Domestic	28.0m	482m Northwest
	150°53'13.8"E			
GW013888	31°08'14.3"S	Stock	76.2m	1103m Southwest

😂 admin@mossenviro.com

- 🔁 www.mossenviro.com
- ♠ PO Box 390, Tamworth NSW 2340

	150°53'09.1"E			
GW024392	31°08'29.3"S	Irrigation	29.3m	1061m Southwest
	150°53'09.1"E			
GW048480	31°08'15.3"S	Stock, Domestic	33.50m	1583m West
	150°52'49.1"E			
GW048484	31°08'15.3"S	Stock, Domestic	30.4m	1654m West
	150°52'46.1"E			
GW048456	31°08'11.3"S	Stock, Domestic	22.3m	1775m West
	150°52'39.1"E			

Drillers logs for each groundwater bores describe the dominant soil profile as:

- Topsoil Sand, Brown topsoil
- Subsoils B Shale Brown, Shale Yellow,
- Subsoils C Blue Basalt, Basalt -water bearing, yellow clay, Red clay, Mudstone.

During the site investigation, a hand auger was used to expose the soil profile up to a depth of 150mm and the soil profile was majorly moist brown clay. Gravel and stones were also present at some locations. More details on soil profile during site visit is included in the digital bore log in **Appendix E**.

The southern boundary of Site A showed characteristics of low water-holding capacity soils which was identified to be in proximity to the gully line. The areas around the water tank around the existing farm shed on site also appeared to be waterlogged during the investigation. Although, there was a 51mm rainfall event within the preceding 24 hours of the site visit, and the waterlogging may also be most likely be due to loss of soil structure from hoof compaction. The ground surface was wet during the visit as water was evident on the surface.

- 😂 admin@mossenviro.com
- 🔁 www.mossenviro.com
- 🟫 PO Box 390, Tamworth NSW 2340

Figure 2-10: Photos showing water logging characteristics on Site A

Burkes Gully flows across from the boundary of the Site and it is a first order tributary of the Timbumburi Creek. Timbumburi creek is a Laterally Unconfined Continuous River, with a poor stream condition and low recovery potential. See map below showing the hydro lines around the site. During the site investigation, Burkes Gully appeared highly vegetated and dry however, the dams along the gully line were filled with water.

😂 admin@mossenviro.com

- 🔁 www.mossenviro.com
- 秴 PO Box 390, Tamworth NSW 2340

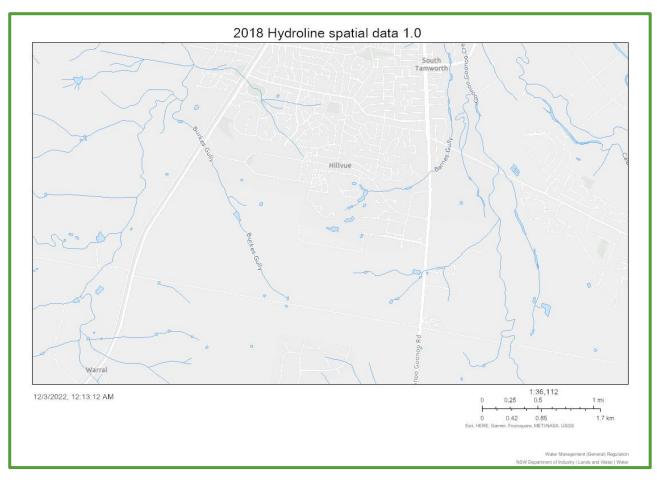


Figure 2-11: Hydroline data of the site and environs

2.6 FLOOD POTENTIAL

The Tamworth Regional Council (TRC) flood studies and the NSW SEED database was checked for the flood planning areas on or around The Site. The NSW SEED map indicates the Peel River and Timbumburi Creek to be in the flood planning area for Tamworth. See image below identifying the flood planning areas.

The TRC flood studies identifies that the areas affected by depths of flow greater than 100 mm are generally confined to the network of natural gullies and man-made diversion channels which drain to either Goonoo Goonoo Creek or Timbumburi Creek. Burkes Gully falls under this category as it drains into the Timbumburi Creek. According to Tamworth flood studies, Burkes Gully is the largest watercourse in the South Tamworth Rural Lands Area (STRLA), with depths of flow exceeding 1m along most of its length north of Burgmanns Lane which is surcharged at the 20-

😂 admin@mossenviro.com

- 🔁 www.mossenviro.com
- 秴 PO Box 390, Tamworth NSW 2340

year ARI level. While outside the limits of the STRLA, the hydrologic standard of the Werris Creek Road culverts on Burkes Gully are less than 20-year ARI².

Several flood studies have been undertaken to define peak flood levels on the floodplains of the Peel River, Goonoo Goonoo Creek and Timbumburi Creek at Tamworth. Depths of overland flow in the highly urbanised parts of Tamworth south of the Peel River and west of Goonoo Goonoo Creek are generally less than 300 mm for storms with ARI's up to 100 years.³

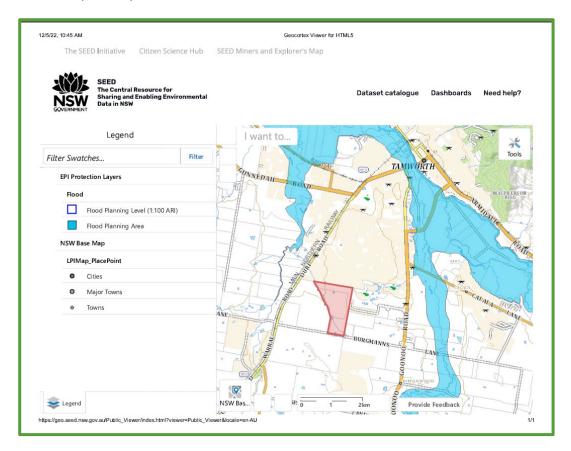


Figure 2-12: Flood planning Areas around the site

² TRC, *Tamworth City Wide Flooding Investigation – Vol 2 (2019)* <u>Flood Studies | Tamworth Regional Council (nsw.gov.au)</u>

³ TRC, Tamworth City Wide Flooding Investigation – Vol 1 (2019) Flood Studies | Tamworth Regional Council (nsw.gov.au)

😂 admin@mossenviro.com

- 🔀 www.mossenviro.com
- 秴 PO Box 390, Tamworth NSW 2340

2.7 UNDERGROUND UTILITIES

A Before You Dig Australia search (BYDA) formerly known as Dial Before You Dig (DBYD) enquiry was carried out on 6/11/2022 to determine the presence of underground utilities which may act as conduits for contamination migration both onsite and offsite. Five Assets owners were notified of enquiry and plans were received for each asset owners. They are:

- AARNet Pty Ltd NSW
- o APA Group Networks NSW Tamworth
- Essential Energy
- NBN Co NswAct
- Telstar NSW North

All BYDA plans received from each asset owners have been collated and included in **Appendix B.** A summary of the plans revealed the presence of Gas pipelines and associated infrastructures, fibre optic asset and other underground cable utilities. Further enquiries will be required in regard to network cables prior to start of works. Although, no Underground Petroleum Systems Services (UPSS) were identified in the searches, the existing utilities will be taken into consideration as potential contamination migration pathways.

A number of overhead poles were identified mostly on lot boundaries during the site visit.

Figure 2-13: Images showing overhead poles on site

2.8 ACID SULPHATE SOILS AND SALINITY

Acid sulphate soils is the common term for soil which contains chemical compounds known as metal sulphides. Soil containing metal sulphides is usually not a concern when it remains undisturbed or covered by water, but if it is

😂 admin@mossenviro.com

- 🔁 www.mossenviro.com
- ☆ PO Box 390, Tamworth NSW 2340

exposed to air, it can pose a risk to water quality. Acid sulphate soils form when there is a combination of factors, which includes a source of sulphate from seawater or saline groundwater.⁴

The NSW SEED map did not indicate the occurrence of salinity of sulphate soils on site or its surrounding. The NSW eSpade was further checked, and the result shows the occurrence of salinity evidence around site (See figure 2-14 below). The results show salinity occurrence majorly beyond the eastern boundary of the site. There is salting evidence within 500m of the site boundary, while 761m and beyond show a strong salting evidence.

Salinity has been included in the PSI because salinity affects the quality of soils and groundwater which impacts on building material usage and water usage for a residential development.

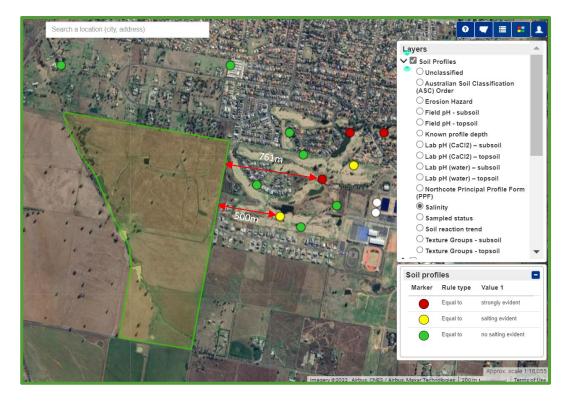


Figure 2-14: Salinity evidence around the site

⁴ Water Quality Australia, Department of Agriculture, Water, and the Environment. Available at: <u>https://www.waterquality.gov.au/issues</u>

😂 admin@mossenviro.com

- 🔁 www.mossenviro.com
- 숚 PO Box 390, Tamworth NSW 2340

3. SITE BACKGROUND

3.1 PREVIOUS STUDIES

A Preliminary Site Contamination Investigation has been prepared for TRC in April 2014 by Mitchel Hanlon Consulting Pty Ltd⁵. The PSI was conducted for 36 individual lots which included Lot 6A in DP 161273 and Lot 1 in DP 795331. These Lot numbers were the former identifiers for Site A. The image below has been extracted from the previous PSI study and it shows the previous study areas which includes Site A identified as Lot 6A in DP 161273 and Lot 1 in DP 795331.

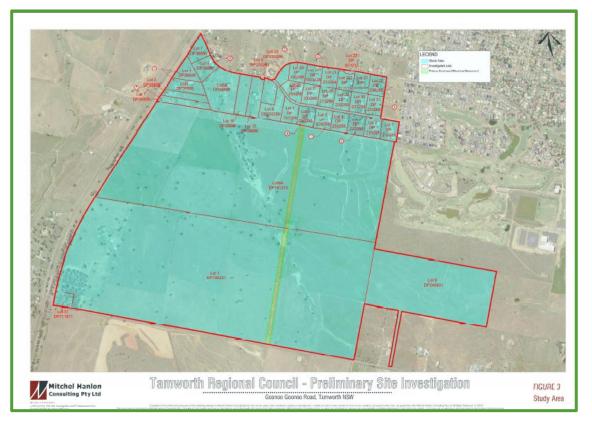


Figure 3-1: Image showing previous PSI study area⁵

Based on the previous study, there was no potential contaminants of concern for the site. However, adjoining lots were identified as containing potential contaminants of concerns due to the activities carried out on the lots. The major activities of concerns were the storage of vehicles and heavy equipment and the storage of aboveground fuel storage tanks which have the potential for hydrocarbon contamination via leakages of oil, fuels onto the soil. This has raised the concern for offsite migration of hydrocarbon and has been included in this PSI study.

⁵ Preliminary Site Contamination Investigation. South Tamworth Rural Lands Master Plan, 2014. Mitchel Hanlon Consulting Pty Ltd, 2014 Prepared for Tamworth Regional Council.

😂 admin@mossenviro.com

- 🔁 www.mossenviro.com
- 秴 PO Box 390, Tamworth NSW 2340

Landholders of concerned lots interviewed during the PSI stated that there were no major fuel spills which had occurred during their ownership (Mitchel Hanlon, 2014). Therefore the report concluded that, based on the quantities stored, off site migration was considered unlikely as contamination potential would be restricted to the immediate area surrounding the infrastructure or beneath the storage tanks.

The report further concluded that the contamination risk across the site is generally low, although localised areas of concern exist across the site. A range of further investigations will be required to assess the actual degree of contamination present on site⁵.

3.2 SITE HISTORY

A Lot search (**Appendix A**) was conducted for the site on 3rd November 2022 using the address Burgmanns Lane Warral, Tamworth which is inclusive of both lots for Arcadia Estate development. Buffers were also used for the searches which varies from 150m to 1km depending on the search topic. Based on the buffer range, the lot for concern, Site B was included in the search. The following information has been reviewed from the Lot search results to determine the historical land use and assess the likelihood of potentially contaminating activities that may have occurred on site or adjoining sites.

3.2.1 CURRENT AND HISTORICAL TITLE DEEDS

A title search was conducted via New South Wales Land Registry Services Historical Land Records Viewer. The result shows that the certificate of title or folio for Site A were delivered to CARROLL & O'DEA in 2017 and 2019 respectively. There were no records of other title owners on the database. The title search result for Site B also shows that the certificate of title was delivered to CARROLL & O'DEA in 2017.

The Lot search was further checked for mining titles and no results were returned for the Current Mining and Exploration Titles. Historical mining and exploration title shows the title holder to be Petrosearch Pty Ltd, Sion Resources Australia from 01/1981 to 12/1884.

3.2.2 HISTORICAL AERIAL PHOTOGRAPHS

Historical aerial photographs were reviewed to determine whether there was an indication of previous land use activities within a buffer of 150m from the site. All images reviewed are included in **Appendix A** from pages 20-28 and are described in the table below.

Table 3-1: Historical aerial photo description

Year	Photo Details	Observation
1965	NSW Department of Customer Service	The photograph is black and white and of poor quality.
		Site appears empty, undeveloped with sparse strands of
	GDA 1994 MGA Zone 56	vegetation. A cluster of vegetation can be identified along the north-western corner of the lot, along Burkes Gully

🛄 0419 444 669

🖶 ABN 53 126 494 776

😂 admin@mossenviro.com

🔁 www.mossenviro.com

☆ PO Box 390, Tamworth NSW 2340

		Surrounding lots appear to have some vegetation and a very few structures can be faintly identified outside the north-western boundary of the site.
1976	NSW Department of Customer Service GDA 1994 MGA Zone 56	The photograph is black and white and of poor quality. Site appears empty, undeveloped with sparse strands of vegetation. A cluster of vegetation can be identified along the north-western corner of the lot, along Burkes Gully Surrounding lots appear to have some vegetation and more structures can be identified outside the northern boundary and south-eastern corner of the site.
1984	NSW Department of Customer Service GDA 1994 MGA Zone 56	The photograph is black and white and of clearer visual quality than the previous image. Site appears empty, undeveloped with sparse strands of vegetation. A cluster of vegetation can be identified along the north-western corner of the lot, along Burkes Gully. A structure/shed with a tank can be seen faintly in the middle of the site which was present on Site A during the site visit. Surrounding lots appear to have some vegetation, and more structures can be identified outside the northern boundary and south-eastern corner of the site.
1989	NSW Department of Customer Service GDA 1994 MGA Zone 56	The photograph is in coloured prints and of clearer visual quality. Site appears empty, undeveloped with sparse strands of vegetation. A cluster of vegetation can be identified along the north-western corner of the lot, along Burkes Gully. A structure/shed with a tank can be seen clearly in the middle of the site which was present on Site A during the site visit. One dam can be identified flowing from Burkes Gully along the southern boundary of the site. Surrounding lots appears to have some vegetation, and more structures can be identified outside the northern boundary and south-eastern corner of the site.
1993	NSW Department of Customer Service GDA 1994 MGA Zone 56	The photograph is in coloured prints and of clearer visual quality. Site appears empty, undeveloped with sparse strands of vegetation. A cluster of vegetation can be identified along the north-western corner of the lot, along Burkes Gully A structure/shed with a tank can be identified in the middle of the site which was present on Site A during the site visit.

😂 admin@mossenviro.com

🗲 www.mossenviro.com

☆ PO Box 390, Tamworth NSW 2340

		One dam can be identified flowing from Burkes Gully along the southern boundary of the site. On the western side of the dam, an unidentifiable object can be seen.
		Surrounding lots appears to have some vegetation, and more structures can be identified outside the northern boundary and south-eastern corner of the site.
1998	NSW Department of Customer Service	The photograph is in coloured prints and of good visual quality.
	GDA 1994 MGA Zone 56	Site appears empty, undeveloped with sparse strands of vegetation. A cluster of vegetation can be identified along the north-western corner of the lot, along Burkes Gully
		A structure/shed with a tank can be identified in the middle of the site which was present on Site A during the site visit.
		Five (5) dams can be identified on site, with two (2) being along Burkes Gully.
		Surrounding lots appears to have some vegetation, and more structures can be identified outside the northern boundary and south-eastern corner of the site.
2012	2022 Google Inc	The photograph is in coloured prints and of good visual quality.
	GDA 1994 MGA Zone 56	Site appears empty, undeveloped with sparse strands of vegetation. A cluster of vegetation can be identified along the north-western corner of the lot, along Burkes Gully
		A structure/shed with a tank can be identified in the middle of the site which was present on Site A during the site visit.
		Five (5) dams can identified on site, with two (2) being along Burkes Gully.
		Surrounding lots appears to have some vegetation, and more structures can be identified outside the northern boundary and south-eastern corner of the site.
2017	Aerometrex Pty Ltd	The photograph is in coloured prints and of good visual quality.
	GDA 1994 MGA Zone 56	Site appears empty, undeveloped with lesser strands of vegetation. Some vegetation can be identified along the north-western corner of the lot, along Burkes Gully
		A structure/shed with a tank can be identified in the middle of the site.
		Five (5) dams can identified on site, with two (2) being along Burkes Gully.

😌 admin@mossenviro.com

- 🔁 www.mossenviro.com
- 秴 PO Box 390, Tamworth NSW 2340

		Surrounding lots appears to have some vegetation, and more structures can be identified outside the northern boundary and south-eastern corner of the site.
2022	Aerometrex Pty Ltd	The photograph is in coloured prints and of good visual quality.
	GDA 1994 MGA Zone 56	Site appears empty, undeveloped with lesser strands of vegetation. Some vegetation can be identified along the north-western corner of the lot, along Burkes Gully
		A structure/shed with a tank can be identified in the middle of the site.
		Five (5) dams can identified on site, with two (2) being along Burkes Gully.
		Surrounding lots appears to have some vegetation, and more structures can be identified outside the northern and eastern boundaries, and south-eastern corner of the site.

3.2.3 TAMWORTH HISTORICAL SOCIETY ARCHIVES

A search of the THS archives was conducted on 5/12/2022 and there is no publicly available information for the sites.

3.2.4 NSW OEH CONTAMINATED LAND DATABASES

A review of the NSW OEH Contaminated Land Database established under Section 58 of the CLM Act 1997 found no records for the sites. The search result is presented in **Appendix C**. Eleven (11) notices were matched to five (5) sites however, none of them are in the vicinity of the site. The Lot Search indicated no contaminated land records or former gasworks on site or within buffer. There are also no records of contaminated sites notified to NSW OEH.

3.2.5 POEO ACT 1997 REGISTER

A search of the public register established under Section 308 of *the Protection of the Environment Operations Act 1997* (POEO Act) identified a licensed activity. The result identifies the railway systems operated by UGL Regional Linx Pty Ltd which is 484m Northwest of the site boundary. The rail line is downhill of Sites A&B and there are no evidences of any storage structures on the rail corridor or within the buffer. Potential for migration of contaminant from the rail line is low.

3.2.6 TAMWORTH REGIONAL PLANNING CERTIFICATES

There are no publicly available data for the sites.

😂 admin@mossenviro.com

- 🔁 www.mossenviro.com
- 秴 PO Box 390, Tamworth NSW 2340

3.2.7 SITE HISTORY SUMMARY

It was detailed in the previous PSI report that in the past 60years, Site A had only been used for agricultural purposes (cattle grazing and cropping). Residential use of the site commenced in 2002 when the existing shed or homestead was built at the time of investigation. It was further detailed that all chemicals and fuels held onsite were stored inside sheds with sealed concrete floors (Mitchel Hanlon, 2014). The site investigation conducted by Moss Environmental did not identify shed or homesteads with stored chemicals.

3.3 SITE DESCRIPTION AND SURROUNDING ENVIRONMENT

The findings of the report are based on a site inspection conducted by Moss Environmental on the 15th and 16th November 2022, with the analysis of twenty-two (22) soil samples, (one) 1 surface water and the review of historical data and previous studies.

The site is currently not occupied by any buildings, farm animals were seen to be grazing on all lots. Each parcel of lot is surrounded by wire fencing. There is an open horse stable built out of wooden and metal materials, round concrete water tank and abandoned metal tank on site. The abandoned tank appears destroyed with lots of metal and wooden refuse.

About 95% of this site appears vegetated except for a few access tracks on the southern boundary of the lot area. The site has scattered strands of Eucalyptus trees and shrubs with an approximate number of 40 throughout the site. They have an average height of 13-15m and an average circumference breast height (cbh) of 2-2.5m. Each tree has a dense canopy cover with one of them observed to have nests indicating a habitat tree.

Major ground cover includes a mixture of grasses species and crops utilized for grazing by livestock. Weeds identified include Slender Vervain, Hare's - foot clover, False oatgrass, Wild Oats, Aaron's rod, Prickly lettuce etc.

- 😂 admin@mossenviro.com
- 🗲 www.mossenviro.com
- ♠ PO Box 390, Tamworth NSW 2340

😂 admin@mossenviro.com

- 🔁 www.mossenviro.com
- 秴 PO Box 390, Tamworth NSW 2340

Figure 3-2: Images showing site conditions.

Site B (Lot 1 DP 233288) was also assessed, and it contained a shed, plastic rainwater tanks, metal tanks, metal rods, window frames made of glass and metal, window frames, containers containing adhesives, paints etc. Two soil samples were taken from the front of shed and back of shed using judgemental sampling locations based on the presence of above ground storage tanks (ASTs) and used chemical containers.

- 😂 admin@mossenviro.com
- 🔄 www.mossenviro.com
- ☆ PO Box 390, Tamworth NSW 2340

- 😂 admin@mossenviro.com
- 🔁 www.mossenviro.com
- 秴 PO Box 390, Tamworth NSW 2340

Figure 3-3: Images showing conditions of additional lot

3.4 POTENTIAL AREAS OF ENVIRONMENTAL CONCERN AND CONTAMINANTS OF CONCERN

Based on the available site history, investigations indicated limited potential for any areas of environmental concern (AEC) or contaminants of concern (CoC), with the site being used for farming business over the past years. However, based on the previous study, there are areas of environmental concerns within a 150m buffer of the site which was mentioned in Section 3.1 of this report. Potential contaminants and chemicals of concerns as identified include fuels and oils from the vehicle storage and aboveground fuel tanks.

The previous PSI report (Mitchel Hanlon, 2015) investigated AECs around the site, concluding that the contamination risks across the areas are generally low, although localised areas of concern exist across the site. A range of further investigations will be required to assess the actual degree of contamination present on site.

📙 0419 444 669

- 🖶 ABN 53 126 494 776
- 😂 admin@mossenviro.com
- 🔁 www.mossenviro.com
- 秴 PO Box 390, Tamworth NSW 2340

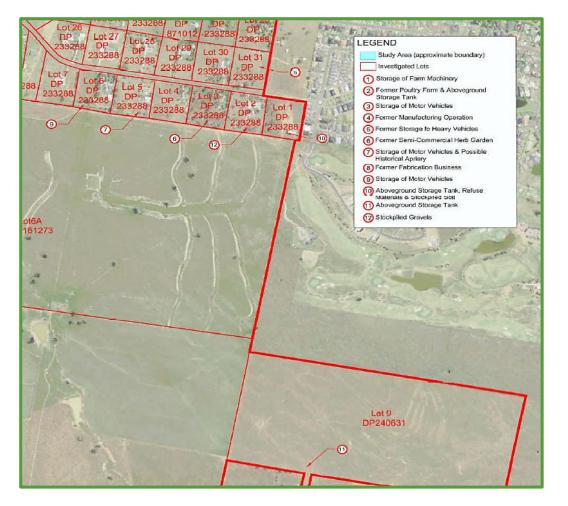


Figure 3-4: AECs identified from the previous report.

Based on the above desktop investigation results, this study sought to address migration of contaminants from offsite by reviewing historical photographs and systematic surface soil sampling across the northern boundary.

None of these areas in figure 3-4 above were identified as potential concerns during this study however, Site B – Lot 1 DP 233288 poses as the major AEC for this report. The other AECs identified above were also considered in this report as potential concerns. The AECs identified in this study are summarised in the Table below.

Table 3-2: Summary of Area of Environmental Concern (AEC)

Potential Areas of Environmental Concern	Description of Potentially Contaminating Activity	Contaminants of Concern	Likelihood of Contamination (Based on Site History Review) ^A	Comments
Site B	Storage of chemicals on site	PAHs BTEX Metals PCBs	Moderate	Contamination, if present, may be limited to surface, near surface and beneath the hardstand areas.

😂 admin@mossenviro.com

- 🔁 www.mossenviro.com
- 秴 PO Box 390, Tamworth NSW 2340

Site A	Storage of	PAHs	Low	Contamination, if present,
	chemicals in	BTEX		may be limited to surface,
	shed on site	Metals		near surface and beneath the
		PCBs		hardstand areas.
Site A	Cattle yard,	Arsenic	Low	No dip sites were identified
	possible use of	Dieldrin		during investigation.
	toxic	DDT		Contamination if present, is
	chemicals on	Lindane		low.
	dip sites			

Legend:

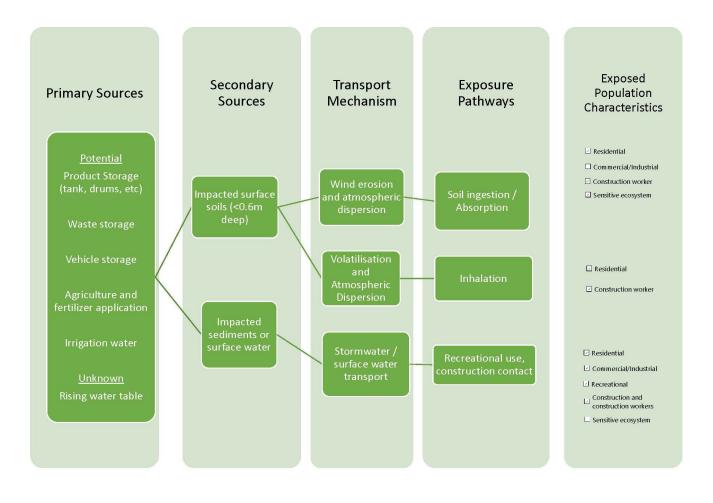
A Qualitative assessment of the probability of occurrence of contamination.

3.5 CONCEPTUAL SITE MODEL

A site model depicting the historical information can be used to inform the sampling strategy, soil sampling locations, and contamination sources. Major areas of concern for this report are the additional lot and adjoining properties with previous history around site boundaries as seen in **figure 3-4** above.

Possible onsite and off-site migrations, receptor linkages, exposure pathways, transport mechanisms and sources of contamination are the main key points to inform the conceptual site model (CSM).

The CSM for this report is represented in a diagram showing the primary and secondary sources, transport mechanism and exposed populations. See **figure 3-5** below. It is also represented using a table which includes all key points. See **Table 3-3** below.



📮 0419 444 669

🖶 ABN 53 126 494 776

😂 admin@mossenviro.com

- 🔁 www.mossenviro.com
- ☆ PO Box 390, Tamworth NSW 2340

Figure 3-5: Conceptual Site Model (CSM)

Preliminary Site Investigation for Lot 1 and 2 DP 1213875, Hillvue

📙 0419 444 669

🖶 ABN 53 126 494 776

😂 admin@mossenviro.com

🔁 www.mossenviro.com

☆ PO Box 390, Tamworth NSW 2340

Table 3-3: Identification of sources considered to inform the conceptual site model.

Possible sources of contaminants	Contaminants of potential concern	Transport mechanism	Exposure pathway	Receptor
Storage of vehicles, heavy vehicles and equipment on adjoining lots within the northern boundary of Site A	BTEX Metals PAHs PCBs Alkalis (pH)	Groundwater Surface soil erosion Wind blown	Ingestion of contaminated soil and groundwater or borehole water Dermal contact	Humans Animals Construction workers Neighbours
Storage of paints and chemicals on site and on additional lot	PAHs BTEX Metals PCBs Sodium hydroxide	Groundwater Surface soil erosion Concrete floor runoff	Dermal contact Uptake by garden plants Ingestion of contaminated soil and groundwater or borehole water	Humans Construction workers Neighbours
Storage of scrap metals on additional lot	Metals	Surface soil erosion Wind blown	Dermal contact Inhalation of particles	Humans Neighbours
Aboveground storage tank on adjoining lot within the eastern boundary of Site A used for storage of diesel	BTEX Metals OC/OP PAHs	Surface soil erosion Concrete floor runoff	Inhalation of gas vapours Ingestion of contamination soil	Humans Animals Construction workers Neighbours
Intensive agriculture and fertilizer application	Metals OC/OP Nutrients e.g., Sodium	Groundwater Surface soil erosion Migration of farm animals	Ingestion of contamination soil and groundwater Dermal contact Uptake by garden plants	Humans Animals Construction workers Neighbours

🌐 admin@mossenviro.com

🔁 www.mossenviro.com

秴 PO Box 390, Tamworth NSW 2340

4. SAMPLING AND ANALYSIS QUALITY PLAN AND SAMPLING METHODOLOGY

4.1 DATA QUALITY OBJECTIVES

As stated in Section 4 of Contaminated Land Management Guidelines for the NSW Site Auditor Scheme 3rd ed⁶ and ASC NEPM Schedule B2 Appendix B⁷, the DQO process is a seven-step planning approach used to define the type, quantity and quality of data needed to support decisions relating to the environmental conditions of a site. The seven-step DQO process that was adopted for this assessment is provided below.

Step 1: State the problem.

The major problem identified for this study is the migration of contaminants from off-site and the possible presence of salinity in surface soils.

Step 2: Identify the decision/goals of study.

The major goal of this study is to determine the extent of contamination on the site proposed for residential subdivision against the human health investigation levels.

Step 3: Identify Information inputs. The primary inputs required for this assessment include:

- A review of the site history information, certificates, and aerial photographs available for the site.
- NATA accredited laboratory to undertake the analysis of soil using appropriate analytical methods.
- Outcome of quality assessment of relevant data.
- Applicable contaminated land guidelines by NSW EPA and other relevant guidelines.

Step 4: Define the study boundaries.

The study boundary was limited to Site A (Lots 1&2 DP 1213875) and Site B (Lot 1 DP 233288) due to the physical condition and previous study history. Sampling along the northern and eastern boundaries was targeted to be close to the fence line of the site due to these being identified as the AEC's for migration from offsite sources. One (1) surface water sample was collected from the dam which formed along Burkes gully line.

Limitations occurred for the collection of groundwater samples. There are three boreholes within 500m of the site however, none of them were accessible during the site visit on 15th November 2022.

⁶ NSW EPA, 2017. Guidelines for the NSW Site Auditor Scheme 3rd ed. Accessed at:

https://www.epa.nsw.gov.au/your-environment/contaminated-land/site-auditor-scheme 7 ASC NEPM 1999. Schedule B2 Volume 3. Accessed at:

https://www.legislation.gov.au/Details/F2013C00288/Html/Volume 3

😂 admin@mossenviro.com

- 🔁 www.mossenviro.com
- 秴 PO Box 390, Tamworth NSW 2340

Step 5: Develop the decision rule.

If the concentrations of CoCs are reported to be below the adopted guidelines for residential purposes, no further investigation is warranted for the site. If the concentration of the CoCs is reported to be above the adopted guidelines, further investigation is warranted for the site.

Step 6: Specify the performance or acceptance criteria.

Decision errors for this assessment may occur from sample collection methods and sample analysis method. QA/QC samples were collected during the site investigation and were analysed by a second NATA accredited laboratories. Based on the results and the closeness of data to the assessment criteria, management of potential decisions errors will be established.

The null hypothesis for this assessment is that "Occurrence of salinity is higher in low areas which have received drainage waters along the gully than the rest of the site".

Step 7: Optimise the design for obtaining data.

Based on the previous steps of the DQO, the optimal sampling and analysis design for obtaining the required data is presented in the following section 4.2 below.

4.2 SAMPLING METHODOLOGY

The soil samples and surface water collected by Moss Environmental were submitted to Envirolab, Sydney and ALS Environmental for analysis. Samples collected were tested for the following contaminants:

- Polyaromatic Hydrocarbons (PAHs),
- Organochlorine/Organophosphate (OC/OP) Pesticides
- Polychlorinated Biphenyls (PCBs),
- Metals (As, Be, B, Cd, Cr, Co, Cu, Pb, Mn, Hg, Ni, Se, Zn)
- Salinity
- Cations (Na)
- Acidity and Alkalinity (pH)
- Benzene, Toluene, Ethylbenzene, Xylene (BTEX)

All samples were logged onto a chain of custody before sending to a NATA-accredited laboratory. Conditions across the site varied between wet, dry gravel, clay and sandy loam material. Samples were collected with a Jarrett auger to a maximum depth of 150mm. The bore logs were digitally logged and are included in **Appendix E**. Bore logs show each soil profile at the collection depth as detailed notes were collected on-site during sampling.

😂 admin@mossenviro.com

- 🔁 www.mossenviro.com
- 秴 PO Box 390, Tamworth NSW 2340

The sampling plan was carried out in accordance with the ASC NEPM 1999 Schedule B2- Site Characterisation⁷ and the NSW EPA Sampling design Part 1 Contaminated Land Guidelines⁸. The sampling locations were decided based on historical information, utilising a stratified sampling strategy to account for land use.

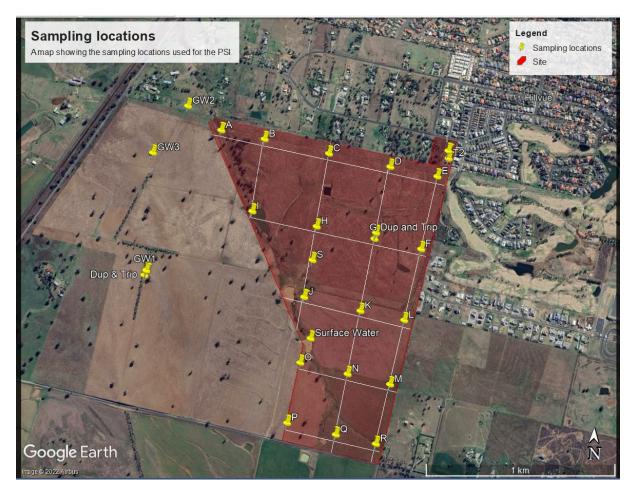


Figure 4-1: A map showing the sampling locations used during the site investigation.

The table shows the coordinates of the bore location which were obtained from the GPS used on the site. There is a possibility of inaccuracy due to unstable local mobile network connection on site, however, these locations are representative of bore logs.

⁸ NSW EPA, 2020. Sampling Design Part 1 – Application. Contaminated Land Guidelines, Draft for Consultation. <u>https://yoursay.epa.nsw.gov.au/sampling-design-guidelines</u>

😂 admin@mossenviro.com

- 🔁 www.mossenviro.com
- ♠ PO Box 390, Tamworth NSW 2340

Table 4-1: Sampling Locations

DESCRIPTION_	LATITUDE	LONGITUDE				
SP-A	-31.1258	150.8921				
SP-B	-31.1263	150.8945				
SP-C	-31.1272	150.8984				
SP-D	-31.1277	150.9013				
SP-E	-31.128	150.9046				
SP-F	-31.1315	150.9039				
SP-G	-31.1312	150.9011				
SP-1 & SP-2	-31.1312	150.9011				
SP-H	-31.127	150.8986				
SP-I	-31.1339	150.8952				
SP-J	-31.1356	150.8969				
SP-L	-31.1349	150.9029				
SP-M	-31.138	150.9025				
SP-N	-31.1376	150.9				
SP-O	-31.1372	150.8973				
SP-P	-31.1402	150.8969				
SP-Q	-31.1407	150.899				
SP-R	-31.1408	150.9019				
SP-S	-31.1322	150.8978				
SP-T	-31.1272	150.9051				
SP-T2	-31.1258	150.9053				
SW-1	-31.1360	150.8979				

😂 admin@mossenviro.com

- 🔁 www.mossenviro.com
- ☆ PO Box 390, Tamworth NSW 2340

4.3 QUALITY ASSURANCE/QUALITY CONTROL DATA EVALUATION

The Data Quality Indicators (DQIs) established for the standard contamination assessments are discussed below in relation to precision, accuracy, representativeness, comparability and completeness (PARCC parameters), and are shown in Table 4-2 below.

- Precision measures the reproducibility of measurements under a given set of conditions. The precision of the laboratory data and sampling techniques is assessed by calculating the Relative Percentage Difference (RPD) of duplicate samples.
- Accuracy measures the bias in a measurement system. The accuracy of the laboratory data that is generated during this study is a measure of the closeness of the analytical results obtained by a method to the 'true' value. Accuracy is assessed by reference to the analytical results of laboratory control samples, laboratory spikes and analysed against reference standards.
- **Representativeness** expresses the degree which sample data accurately and precisely represents a characteristic of a population or an environmental condition. Representativeness is achieved by collecting samples on a representative basis across the site, and by using an adequate number of sample locations to characterize the site to the required accuracy.
- **Comparability** expresses the confidence with which one data set can be compared with another. This is achieved through maintaining a level of consistency in techniques used to collect samples; ensuring analysing laboratories use consistent analysis techniques and reporting methods.
- **Completeness** is defined as the percentage of measurements made which are judged to be valid measurements. The completeness goal is set at there being sufficient valid data generated during the study.

Due to the low risk and the preliminary nature of this assessment, the parameters have been simplified for this project.

4.3.1 FIELD QA/QC

A summary of the Data Quality Indicator (DQI) is shown in table 4-2 below.

Table 4-2: Summary of Data Quality Indicators for Example Contamination Assessment

Data Quality Objective	Frequency	Data Quality Indicator
Precision		
Blind duplicates (intra laboratory)	1 / 20 samples	Refer to Table 4-3, RPD ⁸
Split duplicates (inter laboratory)	1/20 samples	Refer to Table 4-3, RPD ^{Error! Bookmark} not defined.
Accuracy		
Surrogate spikes	All organic analytes	70-130%
Matrix Spikes	All organic analytes	70-130%
Representativeness		
Sampling appropriate for media and analytes	All media / analytes	
Samples extracted and analysed within holding times	All samples	14 days for organics, 28 days for
		mercury, metals 6 months
Comparability		

🛄 0419 444 669

- 🖶 ABN 53 126 494 776
- 😂 admin@mossenviro.com
- 🔁 www.mossenviro.com
- 秴 PO Box 390, Tamworth NSW 2340

Standard operating procedures for sample collection & handling	All Samples	All samples
Standard analytical methods used for all analytes	All Samples	All samples
Consistent field conditions, sampling staff and laboratory analysis	All Samples	All samples
Limits of reporting appropriate and consistent	All Samples	All samples
Completeness		
Sample description and CoCs completed and appropriate	All Samples	All samples
Appropriate documentation	All Samples	All samples
Satisfactory frequency and result for QC samples	All QA/QC samples	95%
Data from critical samples is considered valid.	All Samples	Critical samples valid

 $^{8}RPD(\%) = \frac{Co-Cd}{Co+Cd} \times 100$

Where C_{\circ} is the analyte concentration of the original sample

 C_{d} is the analyte concentration of the duplicate sample

If the RPD between duplicates is greater than the pre-determined data quality indicator, a judgement will be made as to whether the excess is critical in relation to the validation of the data set or unacceptable sampling error is occurring in the field.

The quality assurance / quality control (QA/QC) procedures adopted during this assessment included accurate labelling and recording of all samples collected, and accurate chain of custody records. All sampling equipment was washed down between sampling locations to ensure that there was no cross contamination between samples. The field QA/QC also included preparation of blank samples such as Rinsate, blind samples, trip spikes and blanks.

4.3.2 LABORATORY QA/QC

The laboratories used for the QA/QC analysis are Envirolab (primary laboratory) and ALS Environmental (secondary laboratory). The samples were analysed and extracted within the recommended holding times. The analytical laboratories conducted a QA/QC program which included the analysis of a duplicate, triplicate, surrogate, spike and blanks for the analytes.

4.3.3 DATA EVALUATION

The data precision proposed for this assessment are an acceptable range for Relative Percent Difference (RPD) for duplicate samples. The RPD value is calculated as the absolute value of the difference between the initial and repeat results divided by the average value expressed as a percentage. These have been set as follows:

- Result >10 times Practical quantitation limits (PQL) = RPD value <= 50% are acceptable
- Result >5 times PQL = RPD value <= 75% are acceptable
- Result >2 times PQL = RPD value <= 100% are acceptable
- Result <2 times PQL then acceptable difference 2.5 times.

😂 admin@mossenviro.com

- 🔁 www.mossenviro.com
- ♠ PO Box 390, Tamworth NSW 2340
- The acceptable accuracy for laboratory prepared spikes is 70%-130%.

Results of analysis of duplicate samples (SP-1) was used to calculate the RPD for quality evaluation. Results of these calculations are summarized in the table below.

Table 4-3: RPD Calculations

Contaminants	RPD Soil Samples	Comment			
	SP-1				
Benzene	0%	Accept			
Toluene	0%	Accept			
Ethyl benzene	0%	Accept			
Xylene	0%	Accept			
TRH F1(C6-C10)	0%	Accept			
TRH F2(C10-C16_	0%	Accept			
TRH F3 (C16-C34)	0%	Accept			
TRH F4(>C34)	0%	Accept			
PAHs (Benzo(a)pyrene)	0%	Accept			
OC/OP (HCB)	0%	Accept			
РСВ	0%	Accept			
Heavy metals					
Arsenic	4	Accept			
Cadmium	0.4	Accept			
Chromium	1	Accept			
Copper	1	Accept			
Lead	1	Accept			
Mercury	0.1	Accept			
Nickel	1	Accept			
Zinc	1	Accept			

Notes: 0% represents no difference in results, both results less than level of reporting (LOR).

😂 admin@mossenviro.com

- 🔁 www.mossenviro.com
- 秴 PO Box 390, Tamworth NSW 2340

5. RESULTS

5.1 ASSESSMENT CRITERIA

The assessment criteria for soil at the site were adopted from the ASC NEPM, 2013 Volume 2⁹, Health Investigation Levels (*HLs*) A (Low density Residential). As this is a preliminary site investigation, analytical results are indicative of potential contaminants within Sites A and B. HILs apply generally to the top 3m of the soil for residential use. Analytical results have not been used to determine the suitability of the site for its intended use, but as an indicator for the need for further investigation along with the site history.

Table 5-1: HILs and HSLs for low density residential soil

Analysis	Envirolab PQL (mg/kg)	Health based Investigation Levels (HIL A) ¹ (mg/kg)
Benzene	0.2	100
Toluene	0.5	14000
Ethylbenzene	1	4500
Total Xylenes	1	12000
PAHs	0.05	300
PCBs	0.1	1
Arsenic ²	4	100
Cadmium	0.4	20
Chromium	1	100
Copper	1	7000
Lead ⁴	1	300
Mercury ³	0.1	7
Nickel	1	400
Zinc	1	8000
		Ecological Investigation Level (EIL) (mg/kg) Interim Urban ⁵
рН		NA
Salinity (Sulphate) ⁶	5	2000
Sodium	10	150000

Notes:

1. HIL A Standard residential with garden/accessible soil (home grown produce <10% fruit and vegetable intake, (no poultry), includes children's day care centres, preschools and primary schools.

2. HIL for arsenic assumes 70% oral bioavailability. Site-specific bioavailability may be important and should be considered where appropriate

- 3. Elemental mercury: HIL does not address elemental mercury. A site-specific assessment should be considered if elemental mercury is present, or
- suspected to be present

4. Lead: HIL is based on blood lead models (IEUBK for HILs A, B and C and adult lead model for HIL D where 50% oral bioavailability has been considered. Site-specific bioavailability may be important and should be considered where appropriate.

5. Interim EILs for the urban setting are based on considerations of phytotoxicity, ANZECC B levels, and soil survey data from urban residential properties in four Australian capital cities.

6. For protection of built structures.

⁹ NEPC, 2013 <u>National Environment Protection (Assessment of Site Contamination) Measure 1999</u> (legislation.gov.au)

😂 admin@mossenviro.com

- 🔁 www.mossenviro.com
- ♠ PO Box 390, Tamworth NSW 2340

5.2 REVIEW OF ANALYTICAL DATA

The laboratory analytical results from Envirolab and ALS Environmental have been included in **Appendix D** with a total of 22 soil samples and one surface water sample. Table 5-2 below shows the analytical results for locations which were sampled for all analytes (Heavy metals, BTEX, PAHs, PCBs, pH, Salinity and Sodium). Some of them are above the laboratory Limit of Reporting (LOR), however, they are below the investigative levels for low density residential use. Results above the LOR are in bold letters in the table below.

Table 5-2: Analytes above the laboratory Limit of Reporting

*NT- analysis not done

Analyte	LOR	SP- A	SP- B	SP- C	SP- D	SP- E	SP-	SP- G	SP- H	SP-I	SP-J	SP-	SP- M	SP- N	SP- O	SP- P	SP- Q	SP- R	SP- S	SP-	SP- T2	SP-	SP- 2	SW-1	HIL-A
(mg/kg)		A	D	L.		E	-	G	•			L	IVI		0	P	ų	ĸ	5		12	1	2		
Depth (m)	-	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	-	
Benzene	0.2	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	<0. 2	NT	NT	NT	<0. 2	NT	NT	<0. 2	NT	NT	NT	NT	100
Toluene	0.5	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	<0. 5	NT	NT	NT	<0. 5	NT	NT	<0. 5	NT	NT	NT	NT	14000
Ethylbenzene	1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	<1	NT	NT	NT	<1	NT	NT	<1	NT	NT	NT	NT	4500
Xylene	1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	<1	NT	NT	NT	<1	NT	NT	<1	NT	NT	NT	NT	12000
Arsenic	4	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	5	NT	NT	NT	<4	NT	NT	<4	NT	NT	NT	NT	100
Cadmium	0.4	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	<0. 4	NT	NT	NT	<0. 4	NT	NT	<0. 4	NT	NT	NT	NT	20
Chromium	1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	14	NT	NT	NT	15	NT	NT	13	NT	NT	NT	NT	100
Copper	1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	29	NT	NT	NT	28	NT	NT	33	NT	NT	NT	NT	7000
Lead	1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	13	NT	NT	NT	9	NT	NT	9	NT	NT	NT	NT	300
Mercury	0.1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	<0. 1	NT	NT	NT	<0. 1	NT	NT	<0. 1	NT	NT	NT	NT	7
Nickel	1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	15	NT	NT	NT	9	NT	NT	11	NT	NT	NT	NT	400
Zinc	1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	49	NT	NT	NT	33	NT	NT	44	NT	NT	NT	NT	8000
PAHs	0.05	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	<0. 05	NT	NT	NT	<0. 05	NT	NT	<0. 05	NT	NT	NT	NT	300
PCBs	0.1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	<0. 1	NT	NT	NT	<0. 1			<0. 1	NT	NT	NT	NT	1
рН	-	7.8	6.7	6.7	6.0	6.5	6.9	6.6	6.5	6.3	6.2	6.0	6.2	6.2	6.5	6.5	7.1	7.0	7.3	7.0	6.2	6.3	6.3	NT	NA
Salinity	5	150	74	100	130 0	71	150	85	71	71	260	130	110	110	170	290	100	76	250	100	120	95	47	0.08	2000
Sodium	10	180	60	80	100	60	100	90	60	100	110	70	110	70	70	90	90	110	80	90	60	80	<10	NT	150000

😌 admin@mossenviro.com

- 🔁 www.mossenviro.com
- 秴 PO Box 390, Tamworth NSW 2340

As seen in table 5-2 above, three locations exceeded the laboratory Limit of Reporting of some heavy metals at SP-M, SP-Q and SP-T. However, they are well below the HILs for human health for a low residential use and are of no concern for this investigation.

The lowest pH level across the site is 6.8 pH units with the highest level being 7.8 pH units at SP-A location. The lowest sodium level across site is 60mg/kg while the highest is 180mg/kg at the same location SP-A. A low pH (less than 5) is detrimental to plant growth, not because of the acidity itself, but because of imbalances in nutrient levels. A pH greater than 8 indicates possible high levels of exchangeable sodium or magnesium, and therefore a tendency for the clay to disperse (producing poor soil structure).

Due to the spike in sodium and pH levels for location SP-A at the north-western corner of site along the gully line, the soils can be described as sodic however, according to Bui 2017¹⁰, sodic soils refer to the presence of sodium in a soil and they have a pH higher than 8.5 and an exchangeable sodium percentage of higher than 15% (150000mg/kg). This is because sodic soils are alkaline soils and may be caused by seasonal and structural stability, as a result of leaching with dilute rain, irrigation or weathering. The sample collection was carried out a day after heavy rainfall of 51mm as mentioned in Section 2.5 of this report, hence, the slightly raised levels of sodium and pH along the location of the gully line. pH levels between 5-8 are considered normal for a low-density residential scenario including plant growth.¹²

Salinity was higher at the SP-D location with a value of 1300mg/kg. Other locations are between 47-290mg/kg. All salinity values are reportedly below the HIL salinity criteria for human health of 2000mg/kg in a low residential density scenario.

As with human health, high salinity affects plant growth as it causes the plants to dry up due to the high salt content. To calculate the trigger value for salinity in plants, the estimated salinity from the laboratory result is converted to ECe. ECe is the estimated electrical conductivity of the extract from a saturated soil paste, derived from the EC 1:5 measure and adjusted for the soil texture class. EC 1:5 is the electrical conductivity of a suspension of one part air-dry soil by weight to five parts water by weight, as for pH (water). ECe is the preferred method of estimating soil salinity because it best reflects how salinity will affect plant growth. This will help identify the salinity class of the site for revegetation or gardening purposes.¹¹

Table 5-4 below was derived by converting estimated salinity (mg/kg) to ECe using the process below¹²:

- Converting the laboratory estimated salinity mg/kg result to EC 1:5 dS/m, by multiplying the values by 0.00031.
- EC 1:5 was then converted to ECe by multiplying with a conversion factor of 9 based on the dominant soil type of Clay Loam.

¹⁰ Bui, E. Causes of Soil Salinization, Sodification, and Alkalinization. Oxford Research Encyclopedia of Environmental Science. Retrieved 11 Dec. 2022, from <u>https://oxfordre.com/environmentalscience/view/10.1093/acrefore/9780199389414.001.0001/acrefore-9780199389414-e-264</u>.

¹¹ Measuring soil salinity, DPI Western Australia, 2022. Accessed at Measuring soil salinity | Agriculture and Food

¹² Chemical tests, Chapter D3, NSW DPI. <u>Chemical tests (nsw.gov.au)</u>

😂 admin@mossenviro.com

- 🔁 www.mossenviro.com
- ♠ PO Box 390, Tamworth NSW 2340
- The result in ds/m unit was multiplied by 100 which equals values in mS/m to enable proper interpretation of results.

The salinity classes and trigger value used to interpret the results are as follows:

Table 5-3: Salinity classes and trigger value for plant absorption

Salinity classes	ECe for all soil type (mS/m)
Non-saline	<200
Slightly saline	200-400
Moderately	400-800
Highly	800-1600
Severely	1600-3200
Extremely	>3200

Using the above information, table 5-4 shows the salinity classes for each location across the site. Location SP-D falls under a slightly saline class. The health criteria for salinity in a low residential density scenario is 2000mg/kg which equals 558mS/m.

Table 5-4: Estimated salinity conversion to calculate plant absorption values

Sampling location	Estimated Salinity (mg/kg)	ECe (mS/m)	Salinity classes
SP-A	150	41.85	Non- Saline
SP-B	74	20.646	Non- Saline
SP-C	100	27.9	Non- Saline
SP-D	1300	362.7	Slightly saline
SP-E	71	19.809	Non- Saline
SP-F	150	41.85	Non- Saline
SP-G	85	23.715	Non- Saline
SP-H	71	19.809	Non- Saline
SP-I	71	19.809	Non- Saline
SP-J	260	72.54	Non- Saline

🤤 admin@mossenviro.com

🔁 www.mossenviro.com

♠ PO Box 390, Tamworth NSW 2340

SP-L	130	36.27	Non- Saline
SP-M	110	30.69	Non- Saline
SP-N	110	30.69	Non- Saline
SP-O	170	47.43	Non- Saline
SP-P	290	80.91	Non- Saline
SP-Q	100	27.9	Non- Saline
SP-R	76	21.204	Non- Saline
SP-S	250	69.75	Non- Saline
SP-T	100	27.9	Non- Saline
SP-T2	120	33.48	Non- Saline
SP-1	95	26.505	Non- Saline
SP-2	47	13.113	Non- Saline

Salinity also has effects on building materials e.g. concrete because the salt crystals will exert physical pressure on building materials surrounding it.¹³ The slightly saline level seems to be localised to SP-D along the northern boundary and is not a cause for concern as this may be attributed to soil erosion from the rainfall event.

There were no exceedances of criteria for contaminants from a human health perspective for the specific proposed land use (low density residential) of 558mS/m. It can be concluded that there is no occurrence of salinity or acid sulphate soil from the topsoil sampling on the Site. Contamination potential is therefore described as low for the site.

¹³ Al-Adili, A. and Sabs, M., 2019. Effect of salty soil on subsurface concrete strength. *International Journal of Civil Engineering and Technology (IJCIET, 10*(1), pp.2556-2565.

😂 admin@mossenviro.com

- 🔁 www.mossenviro.com
- 秴 PO Box 390, Tamworth NSW 2340

6. CONCLUSIONS

6.1 CONCLUSION

The results of the PSI indicate that the surroundings of the site have a mixed history of residential use, farming, heavy and light vehicle storage and workshops, while Site A has only an history of farming and grazing. Surrounding lots also have a history of above tank storage locations which poses the likelihood of offsite migration to Site A.

Based on the site history review, surrounding site history and visual observation carried out for this report, Moss Environmental concludes the following for this PSI report:

- The site was used for grazing and farming since the 1960s and it is still being currently used for farming.
- There is evidence of a structured shed and water tank on site from the aerial imagery and was found on site during the site investigation.
- Surrounding lots have a history of above tank storage locations which poses the likelihood of offsite migration to the subject site of this report. However, the potential is regarded as low.
- There is Burkes Gully across the site boundary and due to the slope of site, will serve as a collection point for sediments.
- Salinity is recorded to occur over a distance of 500m from the eastern boundary of the site.
- The additional lot currently has chemical storage, lot of scraps and abandoned materials on site.
- There are no notices of contamination with the council or the EPA available for the Site or surroundings.
- There is no evidence of oil spills or stains on the site as site is highly vegetated.
- There is no evidence of old rubbish tips on site.
- No groundwater investigation has been conducted for the site of the surrounding areas.

Based on the limited soil and surface water assessment and laboratory analytical results, the following conclusions are drawn:

- The site does not currently require the remediation of the identified CoCs, and no further investigation is required at this time.
- The topsoils of all locations around the site are below the assessment criteria and are therefore at low risk of contamination to human health.
- All analytes (BTEX, PAHs, PCB, OC/OP, Salinity, pH, Sodium) are below the health investigative levels for topsoils.
- Slightly elevated sodium and pH levels at SP-A sample location do not present issues with soil suitability. This is attributed to the rainy event before soil sampling and possible topsoil erosion from neighbouring lots where irrigation may have taken place.
- There is a very low risk of further soil and groundwater contamination at the site.

😂 admin@mossenviro.com

🔁 www.mossenviro.com

♠ PO Box 390, Tamworth NSW 2340

6.2 RECOMMENDATIONS

Based on the above conclusions, Moss Environmental recommends the following to ensure complete suitability for the proposed land use:

- Any soils requiring removal from the site, as part of future site works, should be classified in accordance with the "Waste Classification Guidelines, Part 1: Classifying Waste" NSW EPA (2014).
- A site specific 'Unexpected Finds Protocol' is to be made available for reference for all occupants and/or site workers in the event unanticipated contamination is discovered.

6.3 LIMITATIONS

This report sets out the findings of a Preliminary Site Investigation by Moss Environmental. A detailed site assessment is not warranted at this stage.

This report should be read in full, and no executive summary, conclusion or other section of the report may be used or relied on in isolation or taken as representative of the report as a whole. No responsibility is accepted by Moss Environmental, and any duty of care that would or may arise but for this statement is excluded, in relation to any use of any part of this report other than on this basis.

This report has been prepared for the sole benefit of and use by the Client. No other person may rely on the report for any purpose whatsoever except with Moss Environmental's express written consent which shall not be unreasonably withheld. Any duty of care to third parties that may arise in respect of persons other than the Client, but for this statement, is excluded.

Moss Environmental owns the copyright in this report. No copies of this report are to be made or distributed by any person without express written consent to do so from Moss Environmental which shall not be unreasonably withheld.

If the Client provides a copy of this report to a third party, without Moss Environmental's consent, the Client indemnifies Moss Environmental against all loss, including without limitation consequential loss, damage and/or liability, howsoever arising, in connection with any use or reliance by a Third Party.

The works undertaken by Moss Environmental are based solely on the scope of works, as agreed by the Client (Scope of Works). No other investigations, sampling, monitoring works or reporting will be carried out other than as expressly provided in the Scope of Works. A COPY OF THE SCOPE OF WORKS IS AVAILABLE ON REQUEST.

The conclusions stated in this report are based solely on the information, Scope of Works, analysis and data that are stated or expressly referred to in this report.

To the extent that the information and data relied upon to prepare this report have been conveyed to Moss Environmental by the Client or third parties orally or in the form of documents, Moss Environmental has assumed that the information and data are completely accurate and has not sought independently to verify the accuracy of the information or data. Moss Environmental assumes no responsibility or duty of care in respect of any errors or omissions in the information or data provided to it.

😂 admin@mossenviro.com

- 🔁 www.mossenviro.com
- ♠ PO Box 390, Tamworth NSW 2340

Moss Environmental assumes no responsibility in respect of any changes in the condition of the Site which have occurred since the time when Moss Environmental gathered data and/or took samples from the Site on its site inspections dated 15/11/2022 and 16/11/2022.

Moss Environmental has not investigated any off-site conditions, including the extent if any to which substances in the Site may be emanating off Site, and if so whether any adjoining sites have been or may be impacted by contamination originating from the Site.

Moss Environmental has prepared this report with the diligence, care and skill which a reasonable person would expect from a reputable environmental consultancy and in accordance with environmental regulatory authority and industry standards, guidelines and assessment criteria applicable as at the date of this report. Industry standards and environmental criteria change frequently and may change at any time after the date of this report.

😂 admin@mossenviro.com

🔁 www.mossenviro.com

♠ PO Box 390, Tamworth NSW 2340

7. REFERENCE LIST

Al-Adili, A. and Sabs, M., 2019. Effect of salty soil on subsurface concrete strength. International Journal of Civil Engineering and Technology (IJCIET, 10(1), pp.2556-2565.

ASC NEPM 1999. Schedule B2 Volume 3. Accessed at: https://www.legislation.gov.au/Details/F2013C00288/Html/Volume 3

Bui, E. Causes of Soil Salinization, Sodification, and Alkalinization. *Oxford Research Encyclopedia of Environmental Science*. Retrieved 11 Dec. 2022, from: https://oxfordre.com/environmentalscience/view/10.1093/acrefore/9780199389414.001.0001/acrefore-9780199389414-e-264

Chemical tests, Chapter D3, NSW DPI. Chemical tests (nsw.gov.au)

Measuring soil salinity, DPI Western Australia, 2022. Accessed at Measuring soil salinity | Agriculture and Food

NEPC, 2013 National Environment Protection (Assessment of Site Contamination) Measure 1999 (legislation.gov.au)

NSW EPA, 2017. Guidelines for the NSW Site Auditor Scheme 3rd ed. Accessed at: https://www.epa.nsw.gov.au/your-environment/contaminated-land/site-auditor-scheme

NSW EPA, 2020. Sampling Design Part 1 – Application. Contaminated Land Guidelines, Draft for Consultation: Available at: <u>https://yoursay.epa.nsw.gov.au/sampling-design-guidelines</u>

Preliminary Site Contamination Investigation. South Tamworth Rural Lands Master Plan, 2014. Mitchel Hanlon Consulting Pty Ltd, 2014 Prepared for Tamworth Regional Council.

Sampling design part 1 – application, Contaminated Land Guidelines, NSW Environment Protection Authority, 2022

The Australian Soil Classification, 1st ed. Available at: ASC - CHROMOSOLS (csiro.au)

TRC, *Tamworth City Wide Flooding Investigation – Vol 1 (2019)* Flood Studies | Tamworth Regional Council (nsw.gov.au)

TRC, Tamworth City Wide Flooding Investigation – Vol 2 (2019) Flood Studies | Tamworth Regional Council (nsw.gov.au)

Water Quality Australia, Department of Agriculture, Water, and the Environment. Available at: <u>https://www.waterquality.gov.au/issues</u>

😂 admin@mossenviro.com

- 🔁 www.mossenviro.com
- ♠ PO Box 390, Tamworth NSW 2340

8. APPENDICES

APPENDIX A – LOT SEARCH RESULT

Date: 03 Nov 2022 14:09:01 Reference: LS037612 EP Address: Burgmanns Lane Warral, Tamworth, NSW 2340

Disclaimer:

The purpose of this report is to provide an overview of some of the site history, environmental risk and planning information available, affecting an individual address or geographical area in which the property is located. It is not a substitute for an on-site inspection or review of other available reports and records. It is not intended to be, and should not be taken to be, a rating or assessment of the desirability or market value of the property or its features. You should obtain independent advice before you make any decision based on the information within the report. The detailed terms applicable to use of this report are set out at the end of this report.

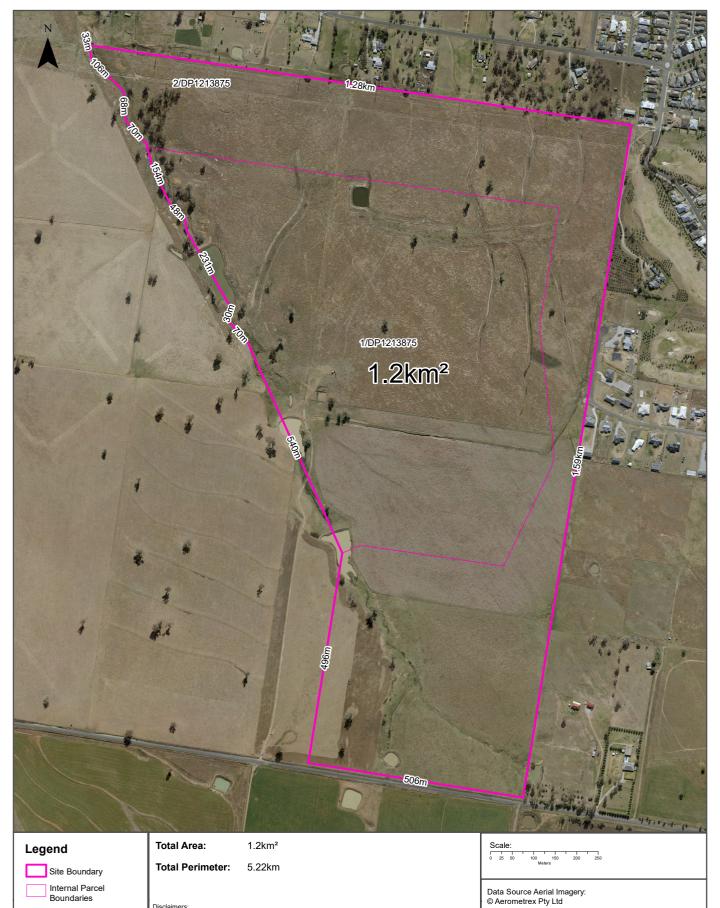
Dataset Listing

Datasets contained within this report, detailing their source and data currency:

Dataset Name	Custodian	Supply Date	Currency Date	Update Frequency	Dataset Buffer (m)	No. Features On-site	No. Features within 100m	No. Features within Buffer
Cadastre Boundaries	NSW Department of Customer Service - Spatial Services	05/10/2022	05/10/2022	Quarterly	-	-	-	-
Topographic Data	NSW Department of Customer Service - Spatial Services	22/08/2022	22/08/2022	Annually	-	-	-	-
List of NSW contaminated sites notified to EPA	Environment Protection Authority	04/10/2022	12/09/2022	Monthly	1000m	0	0	0
Contaminated Land Records of Notice	Environment Protection Authority	31/10/2022	31/10/2022	Monthly	1000m	0	0	0
Former Gasworks	Environment Protection Authority	02/09/2022	14/07/2021	Quarterly	1000m	0	0	0
National Waste Management Facilities Database	Geoscience Australia	26/05/2022	07/03/2017	Annually	1000m	0	0	0
National Liquid Fuel Facilities	Geoscience Australia	23/08/2022	13/07/2012	Annually	1000m	0	0	0
EPA PFAS Investigation Program	Environment Protection Authority	04/10/2022	23/09/2021	Monthly	2000m	0	0	0
Defence PFAS Investigation & Management Program - Investigation Sites	Department of Defence	06/10/2022	06/10/2022	Monthly	2000m	0	0	0
Defence PFAS Investigation & Management Program - Management Sites	Department of Defence	06/10/2022	06/10/2022	Monthly	2000m	0	0	0
Airservices Australia National PFAS Management Program	Airservices Australia	06/10/2022	06/10/2022	Monthly	2000m	0	0	0
Defence 3 Year Regional Contamination Investigation Program	Department of Defence	02/09/2022	02/09/2022	Quarterly	2000m	0	0	0
EPA Other Sites with Contamination Issues	Environment Protection Authority	16/02/2022	13/12/2018	Annually	1000m	0	0	0
Licensed Activities under the POEO Act 1997	Environment Protection Authority	31/10/2022	31/10/2022	Monthly	1000m	0	0	1
Delicensed POEO Activities still regulated by the EPA	Environment Protection Authority	31/10/2022	31/10/2022	Monthly	1000m	0	0	0
Former POEO Licensed Activities now revoked or surrendered	Environment Protection Authority	31/10/2022	31/10/2022	Monthly	1000m	3	3	3
UBD Business Directories (Premise & Intersection Matches)	Hardie Grant			Not required	150m	0	0	0
UBD Business Directories (Road & Area Matches)	Hardie Grant			Not required	150m	-	0	1
UBD Business Directory Dry Cleaners & Motor Garages/Service Stations (Premise & Intersection Matches)	Hardie Grant			Not required	500m	0	0	0
UBD Business Directory Dry Cleaners & Motor Garages/Service Stations (Road & Area Matches)	Hardie Grant			Not required	500m	-	0	0
Points of Interest	NSW Department of Customer Service - Spatial Services	19/10/2022	19/10/2022	Quarterly	1000m	0	0	15
Tanks (Areas)	NSW Department of Customer Service - Spatial Services	19/10/2022	19/10/2022	Quarterly	1000m	0	0	0
Tanks (Points)	NSW Department of Customer Service - Spatial Services	19/10/2022	19/10/2022	Quarterly	1000m	1	1	1
Major Easements	NSW Department of Customer Service - Spatial Services	29/08/2022	29/08/2022	Quarterly	1000m	5	6	22
State Forest	Forestry Corporation of NSW	16/08/2022	14/08/2022	Annually	1000m	0	0	0
NSW National Parks and Wildlife Service Reserves	NSW Office of Environment & Heritage	10/02/2022	31/12/2021	Annually	1000m	0	0	0
Hydrogeology Map of Australia	Commonwealth of Australia (Geoscience Australia)	29/08/2022	19/08/2019	Annually	1000m	2	2	2
Temporary Water Restriction (Botany Sands Groundwater Source) Order 2018	NSW Department of Planning, Industry and Environment	28/03/2022	23/02/2018	Annually	1000m	0	0	0
National Groundwater Information System (NGIS) Boreholes	Bureau of Meteorology; Water NSW	24/01/2022	24/01/2022	Annually	2000m	0	5	192

Dataset Name	Custodian	Supply Date	Currency Date	Update Frequency	Dataset Buffer (m)	No. Features On-site	No. Features within 100m	No. Features within Buffer
NSW Seamless Geology Single Layer: Rock Units	Department of Regional NSW	17/02/2022	01/05/2021	Annually	1000m	1	1	3
NSW Seamless Geology – Single Layer: Trendlines	Department of Regional NSW	17/02/2022	01/05/2021	Annually	1000m	0	0	0
NSW Seamless Geology – Single Layer: Geological Boundaries and Faults	Department of Regional NSW	17/02/2022	01/05/2021	Annually	1000m	0	0	0
Naturally Occurring Asbestos Potential	NSW Dept. of Industry, Resources & Energy	04/12/2015	24/09/2015	Unknown	1000m	0	0	0
Atlas of Australian Soils	Australian Bureau of Agriculture and Resource Economics and Sciences (ABARES)	19/05/2017	17/02/2011	As required	1000m	1	1	2
Soil Landscapes of Central and Eastern NSW	NSW Department of Planning, Industry and Environment	18/08/2022	27/07/2020	Annually	1000m	1	1	3
Environmental Planning Instrument Acid Sulfate Soils	NSW Department of Planning, Industry and Environment	11/10/2022	02/09/2022	Monthly	500m	0	-	-
Atlas of Australian Acid Sulfate Soils	CSIRO	19/01/2017	21/02/2013	As required	1000m	1	1	1
Dryland Salinity - National Assessment	National Land and Water Resources Audit	18/07/2014	12/05/2013	None planned	1000m	0	0	0
Mining Subsidence Districts	NSW Department of Customer Service - Subsidence Advisory NSW	19/08/2021	05/08/2021	Quarterly	1000m	0	0	0
Current Mining Titles	NSW Department of Industry	06/10/2022	06/10/2022	Monthly	1000m	0	0	0
Mining Title Applications	NSW Department of Industry	06/10/2022	06/10/2022	Monthly	1000m	0	0	0
Historic Mining Titles	NSW Department of Industry	06/10/2022	06/10/2022	Monthly	1000m	2	2	2
Environmental Planning Instrument SEPP State Significant Precincts	NSW Department of Planning, Industry and Environment	15/11/2021	07/12/2018	Monthly	1000m	0	0	0
Environmental Planning Instrument Land Zoning	NSW Department of Planning, Industry and Environment	15/11/2021	05/11/2021	Monthly	1000m	2	7	21
Commonwealth Heritage List	Australian Government Department of the Agriculture, Water and the Environment	03/06/2022	13/04/2022	Annually	1000m	0	0	0
National Heritage List	Australian Government Department of the Agriculture, Water and the Environment	03/06/2022	13/04/2022	Annually	1000m	0	0	0
State Heritage Register - Curtilages	NSW Department of Planning, Industry and Environment	18/10/2022	01/07/2022	Quarterly	1000m	0	0	0
Environmental Planning Instrument Local Heritage	NSW Department of Planning, Industry and Environment	11/10/2022	30/09/2022	Monthly	1000m	0	0	0
Bush Fire Prone Land	NSW Rural Fire Service	01/11/2022	19/09/2022	Weekly	1000m	2	2	2
Ramsar Wetlands of Australia	Australian Government Department of Agriculture, Water and the Environment	28/03/2022	19/03/2020	Annually	1000m	0	0	0
Groundwater Dependent Ecosystems	Bureau of Meteorology	28/10/2022	26/10/2022	Annually	1000m	0	0	0
Inflow Dependent Ecosystems Likelihood	Bureau of Meteorology	28/10/2022	26/10/2022	Annually	1000m	0	0	0
NSW BioNet Species Sightings	NSW Office of Environment & Heritage	24/10/2022	24/10/2022	Weekly	10000m	-	-	-

Site Diagram


Burgmanns Lane Warral, Tamworth, NSW 2340

Disclaimers Measureme

Parcels legibility approximate only

hat make up a small

engths removed for readability.

site area have not been labelled for increased

Coordinate System: GDA 1994 MGA Zone 56

Date: 03 November 2022

Contaminated Land

Burgmanns Lane Warral, Tamworth, NSW 2340

List of NSW contaminated sites notified to EPA

Records from the NSW EPA Contaminated Land list within the dataset buffer:

Map Id	Site	Address	Suburb	Activity	Management Class	Status	Location Confidence	Dist	Direction
N/A	No records in buffer								

The values within the EPA site management class in the table above, are given more detailed explanations in the table below:

EPA site management class	Explanation
Contamination being managed via the planning process (EP&A Act)	The EPA has completed an assessment of the contamination and decided that the contamination is significant enough to warrant regulation. The contamination of this site is managed by the consent authority under the Environmental Planning and Assessment Act 1979 (EP&A Act) planning approval process, with EPA involvement as necessary to ensure significant contamination is adequately addressed. The consent authority is typically a local council or the Department of Planning and Environment.
Contamination currently regulated under CLM Act	The EPA has completed an assessment of the contamination and decided that the contamination is significant enough to warrant regulation under the Contaminated Land Management Act 1997 (CLM Act). Management of the contamination is regulated by the EPA under the CLM Act. Regulatory notices are available on the EPA's Contaminated Land Public Record of Notices.
Contamination currently regulated under POEO Act	The EPA has completed an assessment of the contamination and decided that the contamination is significant enough to warrant regulation. Management of the contamination is regulated under the Protection of the Environment Operations Act 1997 (POEO Act). The EPA's regulatory actions under the POEO Act are available on the POEO public register.
Contamination formerly regulated under the CLM Act	The EPA has determined that the contamination is no longer significant enough to warrant regulation under the Contaminated Land Management Act 1997 (CLM Act). The contamination was addressed under the CLM Act.
Contamination formerly regulated under the POEO Act	The EPA has determined that the contamination is no longer significant enough to warrant regulation. The contamination was addressed under the Protection of the Environment Operations Act 1997 (POEO Act).
Contamination was addressed via the planning process (EP&A Act)	The EPA has determined that the contamination is no longer significant enough to warrant regulation. The contamination was addressed by the appropriate consent authority via the planning process under the Environmental Planning and Assessment Act 1979 (EP&A Act).
Ongoing maintenance required to manage residual contamination (CLM Act)	The EPA has determined that ongoing maintenance, under the Contaminated Land Management Act 1997 (CLM Act), is required to manage the residual contamination. Regulatory notices under the CLM Act are available on the EPA's Contaminated Land Public Record of Notices.
Regulation being finalised	The EPA has completed an assessment of the contamination and decided that the contamination is significant enough to warrant regulation under the Contaminated Land Management Act 1997. A regulatory approach is being finalised.
Regulation under the CLM Act not required	The EPA has completed an assessment of the contamination and decided that regulation under the Contaminated Land Management Act 1997 is not required.
Under assessment	The contamination is being assessed by the EPA to determine whether regulation is required. The EPA may require further information to complete the assessment. For example, the completion of management actions regulated under the planning process or Protection of the Environment Operations Act 1997. Alternatively, the EPA may require information via a notice issued under s77 of the Contaminated Land Management Act 1997 or issue a Preliminary Investigation Order.

NSW EPA Contaminated Land List Data Source: Environment Protection Authority © State of New South Wales through the Environment Protection Authority

Contaminated Land

Burgmanns Lane Warral, Tamworth, NSW 2340

Contaminated Land: Records of Notice

Record of Notices within the dataset buffer:

Map Id	Name	Address	Suburb	Notices	Area No	Location Confidence	Distance	Direction
N/A	No records in buffer							

Contaminated Land Records of Notice Data Source: Environment Protection Authority © State of New South Wales through the Environment Protection Authority Terms of use and disclaimer for Contaminated Land: Record of Notices, please visit http://www.epa.nsw.gov.au/clm/clmdisclaimer.htm

Former Gasworks

Former Gasworks within the dataset buffer:

Map Id	Location	Council	Further Info	Location Confidence	Distance	Direction
N/A	No records in buffer					

Former Gasworks Data Source: Environment Protection Authority

 $\ensuremath{\mathbb{C}}$ State of New South Wales through the Environment Protection Authority

Waste Management & Liquid Fuel Facilities

Burgmanns Lane Warral, Tamworth, NSW 2340

National Waste Management Site Database

Sites on the National Waste Management Site Database within the dataset buffer:

Site Id	Owner	Name	Address	Suburb	Class	Landfill	Reprocess	Transfer	Comments	Loc Conf	Dist	Direction
N/A	No records in buffer											

Waste Management Facilities Data Source: Geoscience Australia

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

National Liquid Fuel Facilities

National Liquid Fuel Facilties within the dataset buffer:

Map Id	Owner	Name	Address	Suburb	Class	Operational Status	Operator	Revision Date	Loc Conf	Dist	Direction
N/A	No records in buffer										

National Liquid Fuel Facilities Data Source: Geoscience Australia

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

PFAS Investigation & Management Programs

Burgmanns Lane Warral, Tamworth, NSW 2340

EPA PFAS Investigation Program

Sites that are part of the EPA PFAS investigation program, within the dataset buffer:

Map ID	Site	Address	Loc Conf	Dist	Dir
N/A	No records in buffer				

EPA PFAS Investigation Program: Environment Protection Authority © State of New South Wales through the Environment Protection Authority

Defence PFAS Investigation Program

Sites being investigated by the Department of Defence for PFAS contamination within the dataset buffer:

Map ID	Base Name	Address	Loc Conf	Dist	Dir
N/A	No records in buffer				

Defence PFAS Investigation Program Data Custodian: Department of Defence, Australian Government

Defence PFAS Management Program

Sites being managed by the Department of Defence for PFAS contamination within the dataset buffer:

Map ID	Base Name	Address	Loc Conf	Dist	Dir
N/A	No records in buffer				

Defence PFAS Management Program Data Custodian: Department of Defence, Australian Government

Airservices Australia National PFAS Management Program

Sites being investigated or managed by Airservices Australia for PFAS contamination within the dataset buffer:

Map ID	Site Name	Impacts	Loc Conf	Dist	Dir
N/A	No records in buffer				

Airservices Australia National PFAS Management Program Data Custodian: Airservices Australia

Defence Sites

Burgmanns Lane Warral, Tamworth, NSW 2340

Defence 3 Year Regional Contamination Investigation Program

Sites which have been assessed as part of the Defence 3 Year Regional Contamination Investigation Program within the dataset buffer:

Property ID	Base Name	Address	Known Contamination	Loc Conf	Dist	Dir
N/A	No records in buffer					

Defence 3 Year Regional Contamination Investigation Program, Data Custodian: Department of Defence, Australian Government

EPA Other Sites with Contamination Issues

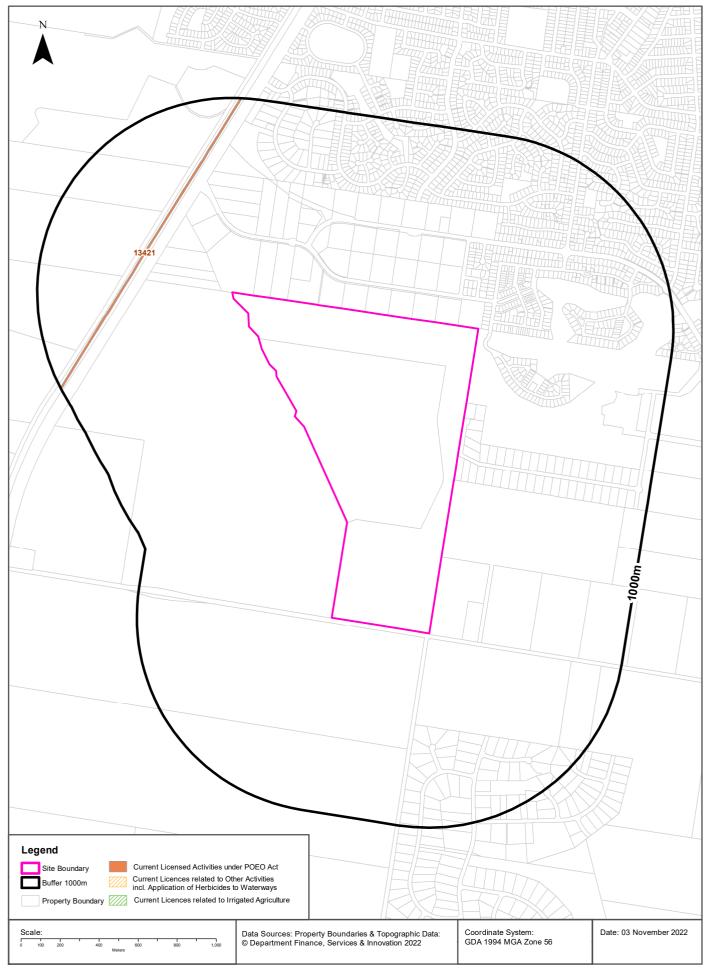
Burgmanns Lane Warral, Tamworth, NSW 2340

EPA Other Sites with Contamination Issues

This dataset contains other sites identified on the EPA website as having contamination issues. This dataset currently includes:

- James Hardie asbestos manufacturing and waste disposal sites
- Radiological investigation sites in Hunter's Hill
- Pasminco Lead Abatement Strategy Area

Sites within the dataset buffer:


Site Id	Site Name	Site Address	Dataset	Comments	Location Confidence	Distance	Direction
N/A	No records in buffer						

EPA Other Sites with Contamination Issues: Environment Protection Authority © State of New South Wales through the Environment Protection Authority

Current EPA Licensed Activities

Burgmanns Lane Warral, Tamworth, NSW 2340

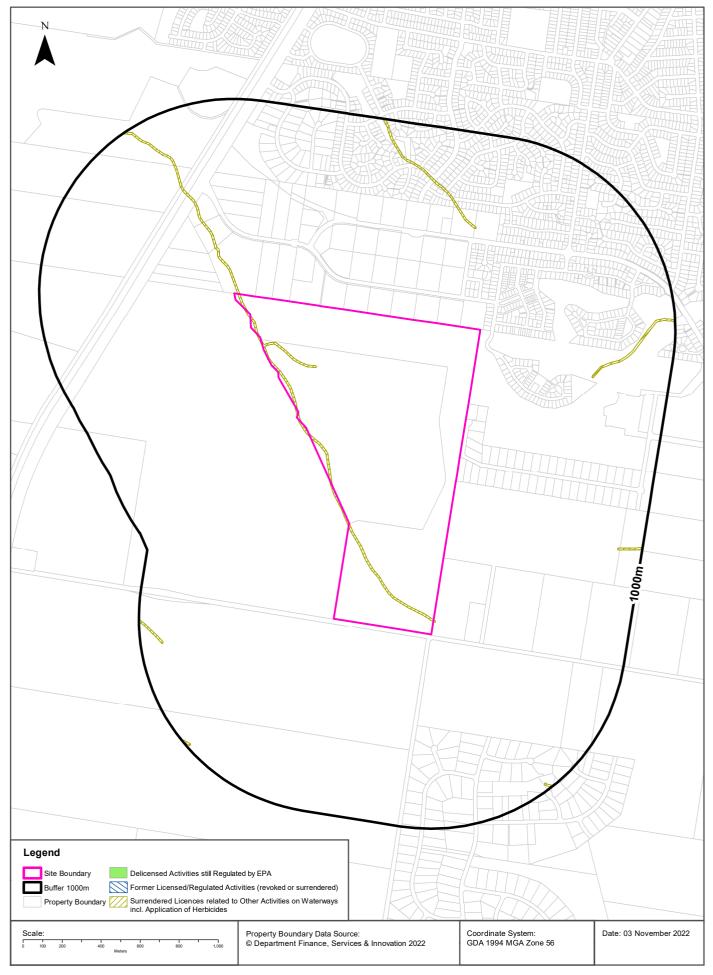
EPA Activities

Burgmanns Lane Warral, Tamworth, NSW 2340

Licensed Activities under the POEO Act 1997

Licensed activities under the Protection of the Environment Operations Act 1997, within the dataset buffer:

EPL	Organisation	Name	Address	Suburb	Activity	Loc Conf	Distance	Direction
13421	UGL REGIONAL LINX PTY LTD		COUNTRY REGIONAL NETWORK, ORANGE, NSW 2800		Railway systems activities	Network of Features	484m	North West


POEO Licence Data Source: Environment Protection Authority

© State of New South Wales through the Environment Protection Authority

Delicensed & Former Licensed EPA Activities

Burgmanns Lane Warral, Tamworth, NSW 2340

EPA Activities

Burgmanns Lane Warral, Tamworth, NSW 2340

Delicensed Activities still regulated by the EPA

Delicensed activities still regulated by the EPA, within the dataset buffer:

Licence No	Organisation	Name	Address	Suburb	Activity	Loc Conf	Distance	Direction
N/A	No records in buffer							

Delicensed Activities Data Source: Environment Protection Authority © State of New South Wales through the Environment Protection Authority

Former Licensed Activities under the POEO Act 1997, now revoked or surrendered


Former Licensed activities under the Protection of the Environment Operations Act 1997, now revoked or surrendered, within the dataset buffer:

Licence No	Organisation	Location	Status	Issued Date	Activity	Loc Conf	Distance	Direction
4653	LUHRMANN ENVIRONMENT MANAGEMENT PTY LTD	WATERWAYS THROUGHOUT NSW	Surrendered	06/09/2000	Other Activities / Non Scheduled Activity - Application of Herbicides	Network of Features	Om	On-site
4838	Robert Orchard	Various Waterways throughout New South Wales - SYDNEY NSW 2000	Surrendered	07/09/2000	Other Activities / Non Scheduled Activity - Application of Herbicides	Network of Features	0m	On-site
6630	SYDNEY WEED & PEST MANAGEMENT PTY LTD	WATERWAYS THROUGHOUT NSW - PROSPECT, NSW, 2148	Surrendered	09/11/2000	Other Activities / Non Scheduled Activity - Application of Herbicides	Network of Features	Om	On-site

Former Licensed Activities Data Source: Environment Protection Authority © State of New South Wales through the Environment Protection Authority

Historical Business Directories

Historical Business Directories

Burgmanns Lane Warral, Tamworth, NSW 2340

Business Directory Records 1950-1991 Premise or Road Intersection Matches

Universal Business Directory records from years 1991, 1982, 1970, 1961 & 1950, mapped to a premise or road intersection within the dataset buffer:

Map Id	Business Activity	Premise	Ref No.	Year	Location Confidence	Distance to Property Boundary or Road Intersection	Direction
N/A	No records in buffer						

Business Directory Records 1950-1991 Road or Area Matches

Universal Business Directory records from years 1991, 1982, 1970, 1961 & 1950, mapped to a road or an area, within the dataset buffer. Records are mapped to the road when a building number is not supplied, cannot be found, or the road has been renumbered since the directory was published:

M	ap Id	Business Activity	Premise	Ref No.	Year	Location Confidence	Distance to Road Corridor or Area
	1	CARRIERS &/OR CARTAGE CONTRACTORS.	Hook J., Bylong Rd, Tamworth	211259	1991	Road Match	140m

Historical Business Directories

Burgmanns Lane Warral, Tamworth, NSW 2340

Dry Cleaners, Motor Garages & Service Stations Premise or Road Intersection Matches

Dry Cleaners, Motor Garages & Service Stations from UBD Business Directories, mapped to a premise or road intersection, within the dataset buffer.

Map Id	Business Activity	Premise	Ref No.	Year	Location Confidence	Distance to Property Boundary or Road Intersection	Direction
N/A	No records in buffer						

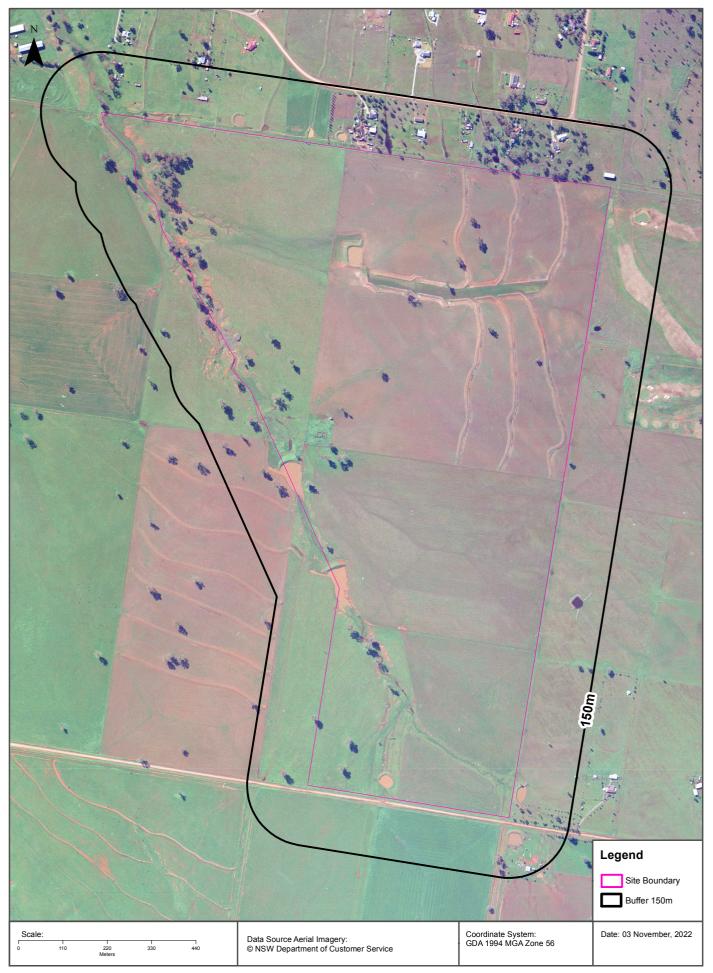
Dry Cleaners, Motor Garages & Service Stations Road or Area Matches

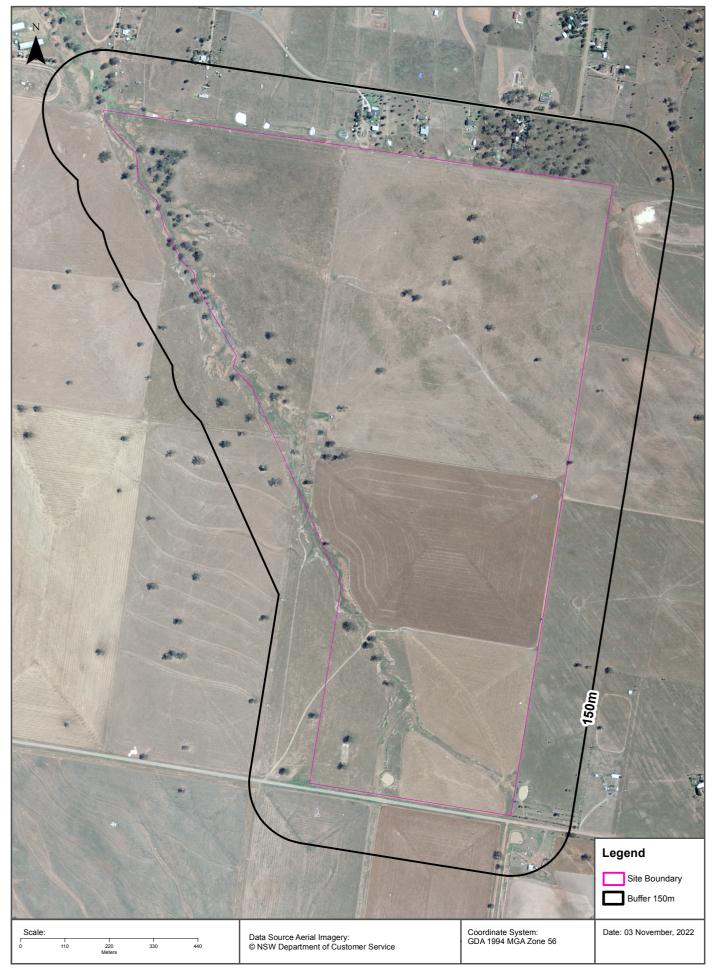
Dry Cleaners, Motor Garages & Service Stations from UBD Business Directories, mapped to a road or an area, within the dataset buffer. Records are mapped to the road when a building number is not supplied, cannot be found, or the road has been renumbered since the directory was published.

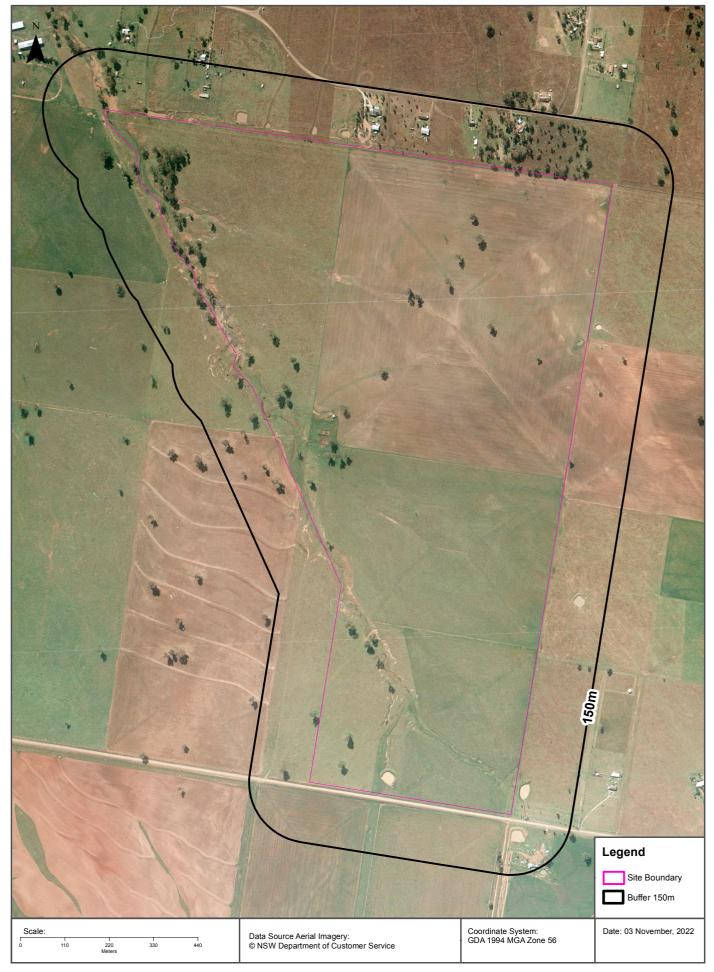
Map Io	Business Activity	Premise	Ref No.	Year	Location Confidence	Distance to Road Corridor or Area
N/A	No records in buffer					

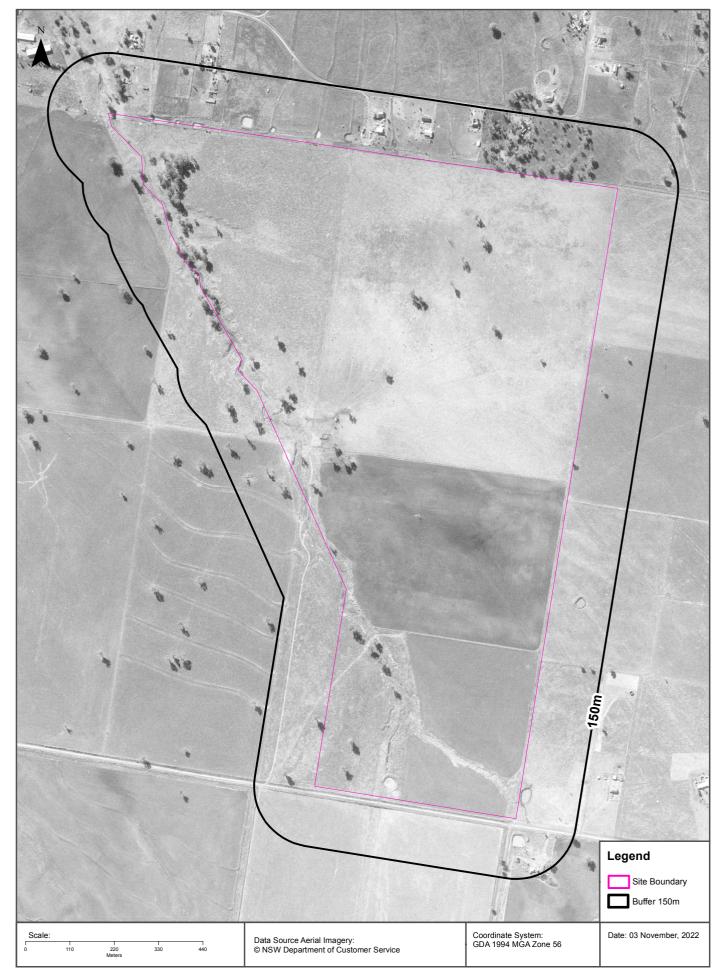
Aerial Imagery 2022 Burgmanns Lane Warral, Tamworth, NSW 2340

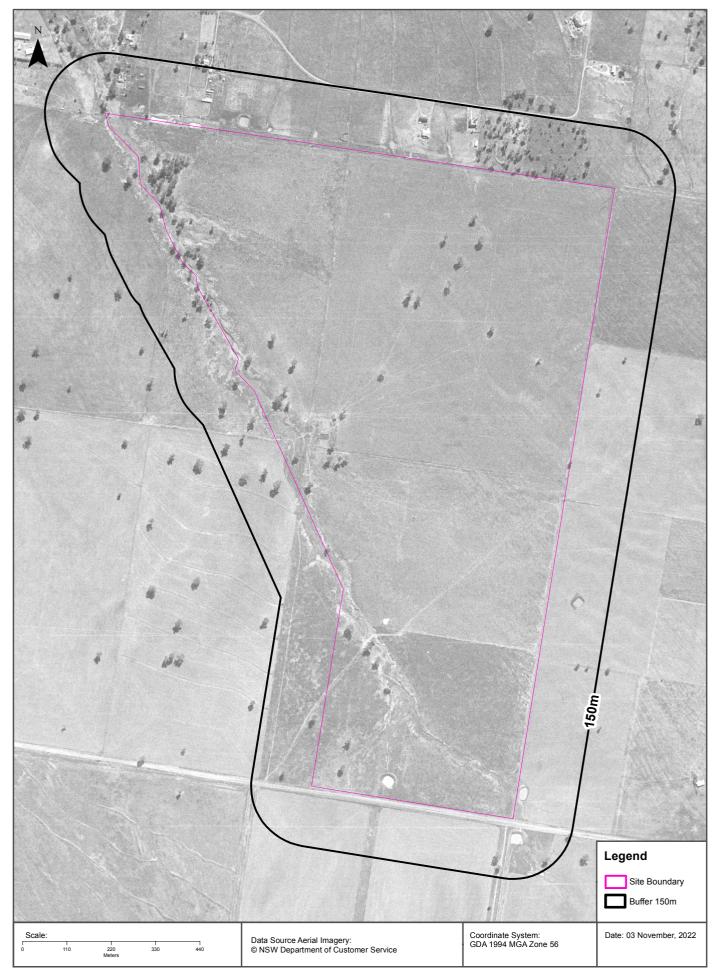
Aerial Imagery 2017 Burgmanns Lane Warral, Tamworth, NSW 2340



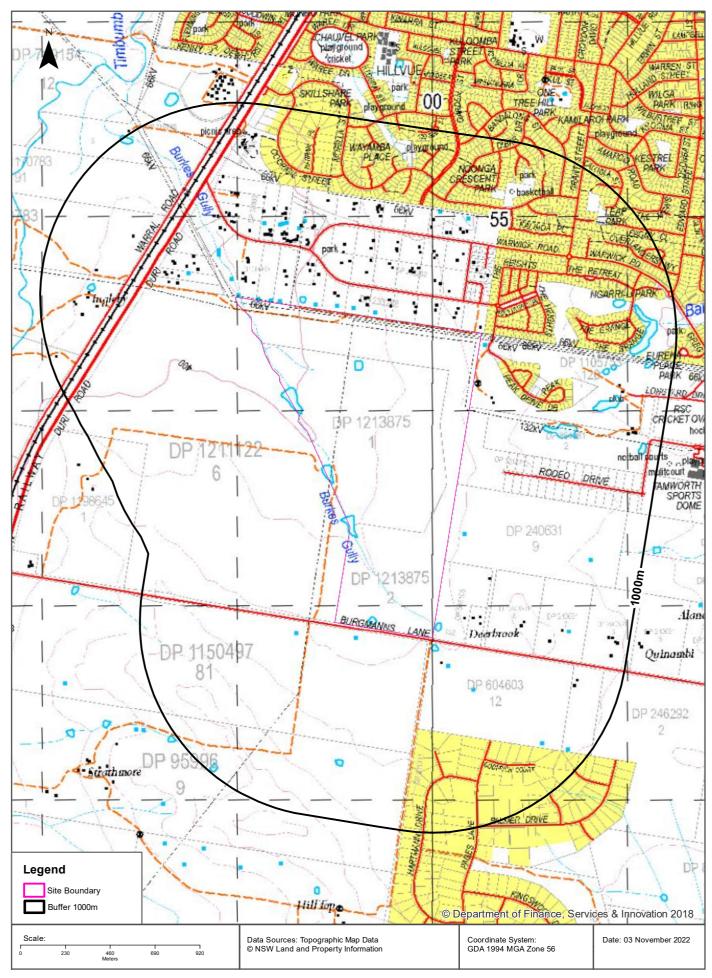


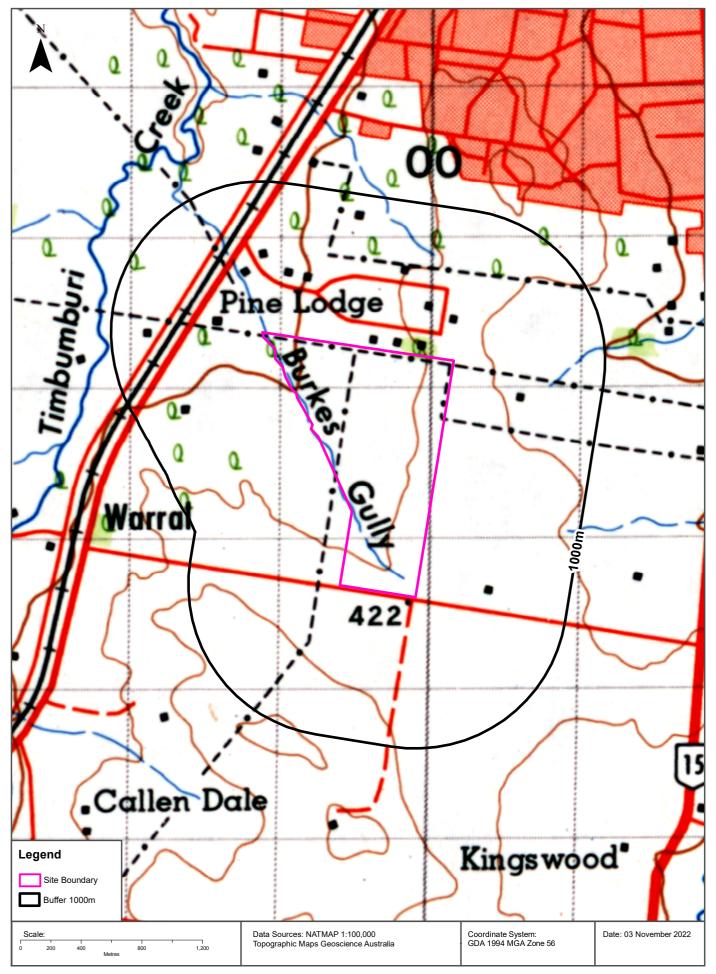


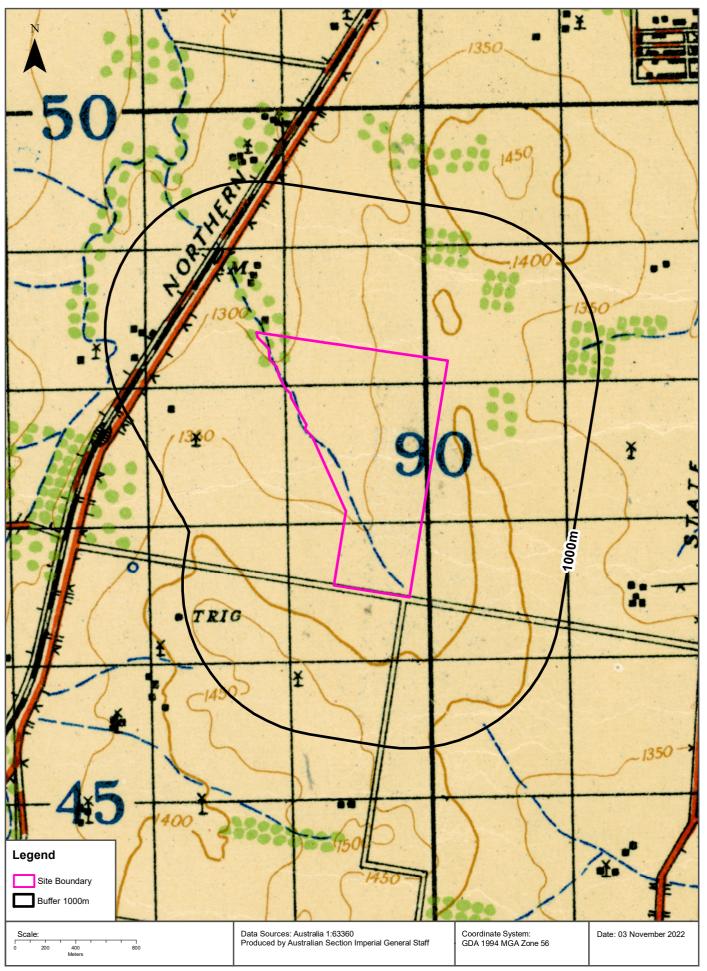




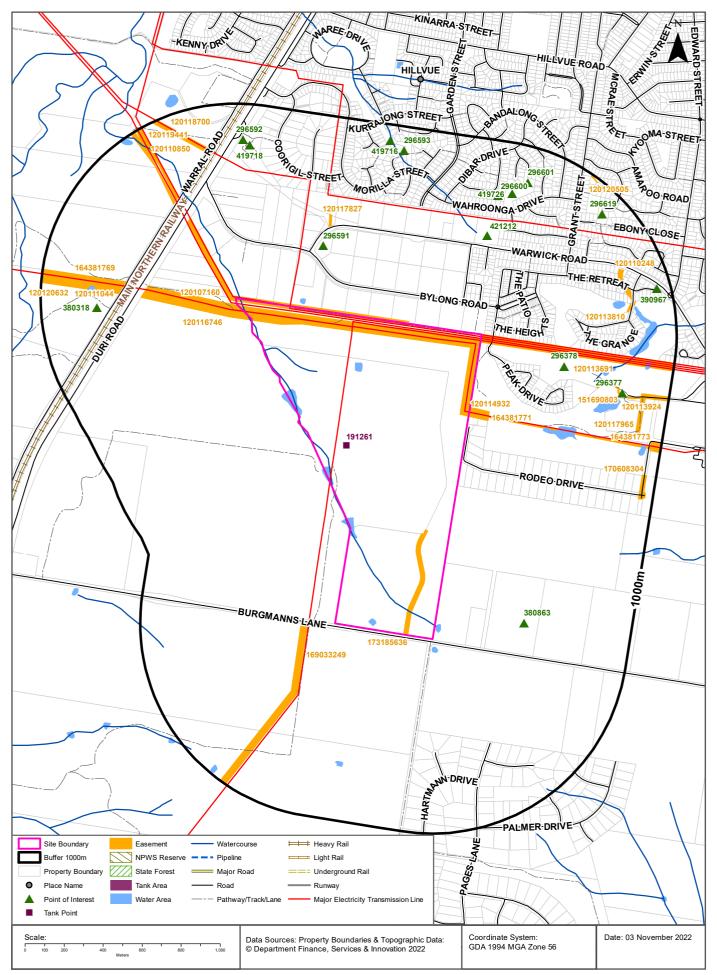





Topographic Map 2015



Historical Map 1975



Historical Map c.1942

Burgmanns Lane Warral, Tamworth, NSW 2340

Points of Interest

What Points of Interest exist within the dataset buffer?

Map Id	Feature Type	Label	Distance	Direction
296591	Park	Park	332m	North
296378	Golf Course	LONGYARD GOLF COURSE	444m	North East
380863	Homestead	DEERBROOK	450m	South East
421212	Retirement Village	OAK TREE RETIREMENT VILLAGE TAMWORTH	507m	North East
380318	Homestead	INGLEBY	712m	North West
296600	Park	NOONGA CRESCENT PARK	719m	North East
419726	Sports Court	BASKETBALL	742m	North East
296377	Club	LONGYARD GOLF CLUB	760m	East
419718	Park	PLAYGROUND	790m	North West
296601	Park	Park	816m	North East
296592	Picnic Area	TAMWORTH LIONS PARK	817m	North West
296619	Park	LEAP PARK	874m	North East
296593	Park	PLAYGROUND	878m	North
419716	Park	WAYAMBA PLACE	918m	North
390967	Park	NGARRI-LI PARK	929m	North East

Topographic Data Source: © Land and Property Information (2015)

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Burgmanns Lane Warral, Tamworth, NSW 2340

Tanks (Areas)

What are the Tank Areas located within the dataset buffer?

Note. The large majority of tank features provided by LPI are derived from aerial imagery & are therefore primarily above ground tanks.

Map Id	Tank Type	Status	Name	Feature Currency	Distance	Direction
N/A	No records in buffer					

Tanks (Points)

What are the Tank Points located within the dataset buffer? Note. The large majority of tank features provided by LPI are derived from aerial imagery & are therefore primarily above ground tanks.

Map Id	Tank Type	Status	Name	Feature Currency	Distance	Direction
191261	Water	Operational		28/06/2017	0m	On-site

Tanks Data Source: © Land and Property Information (2015)

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Major Easements

What Major Easements exist within the dataset buffer?

Note. Easements provided by LPI are not at the detail of local governments. They are limited to major easements such as Right of Carriageway, Electrical Lines (66kVa etc.), Easement to drain water & Significant subterranean pipelines (gas, water etc.).

Map Id	Easement Class	Easement Type	Easement Width	Distance	Direction
173185636	Primary	Right of way	10m,20m	0m	On-site
120107160	Primary	Undefined		Om	On-site
164381771	Primary	Electricity	45&var	Om	On-site
120114932	Primary	Undefined		Om	On-site
120116746	Primary	Undefined		Om	On-site
120113691	Primary	Undefined		0m	North East
169033249	Primary	Electricity	30m	144m	South
120117827	Primary	Undefined		436m	North
120111044	Primary	Undefined		571m	North West
164381769	Primary	Electricity	45&var	571m	North West
120110850	Primary	Undefined		580m	North West
120120632	Primary	Undefined		582m	North West
120119441	Primary	Undefined		590m	North West
151690803	Primary	Right of way		627m	East

Map Id	Easement Class	Easement Type	Easement Width	Distance	Direction
120110248	Primary	Undefined		755m	North East
120113810	Primary	Undefined		757m	North East
120118700	Primary	Undefined		766m	North West
120117965	Primary	Undefined		860m	East
120113924	Primary	Undefined		880m	East
170608304	Primary	Right of way	20m and VAR	929m	East
164381773	Primary	Electricity	45&var	949m	East
120120505	Primary	Undefined		981m	North East

Easements Data Source: © Land and Property Information (2015)

 $Creative \ Commons \ 3.0 \ \textcircled{O} \ Commonwealth \ of \ Australia \ http://creative commons.org/licenses/by/3.0/au/deed.en$

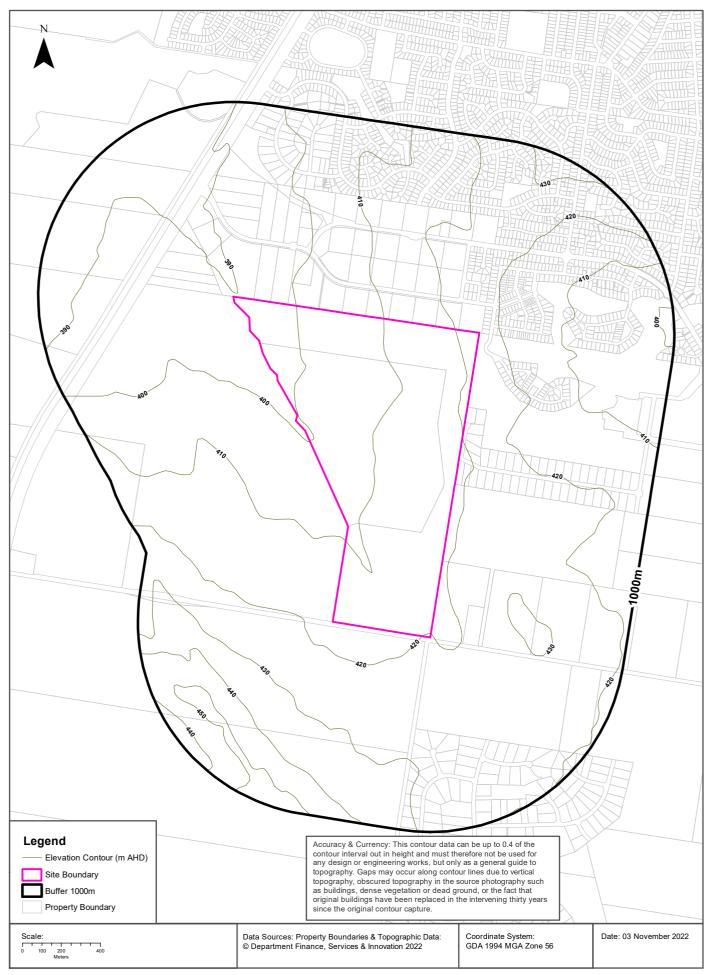
Burgmanns Lane Warral, Tamworth, NSW 2340

State Forest

What State Forest exist within the dataset buffer?

State Forest Number	State Forest Name	Distance	Direction
N/A	No records in buffer		

State Forest Data Source: © NSW Department of Finance, Services & Innovation (2018) Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en


National Parks and Wildlife Service Reserves

What NPWS Reserves exist within the dataset buffer?

Reserve Number	Reserve Type	Reserve Name	Gazetted Date	Distance	Direction
N/A	No records in buffer				

NPWS Data Source: © NSW Department of Finance, Services & Innovation (2018) Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en **Elevation Contours (m AHD)**

Hydrogeology & Groundwater

Burgmanns Lane Warral, Tamworth, NSW 2340

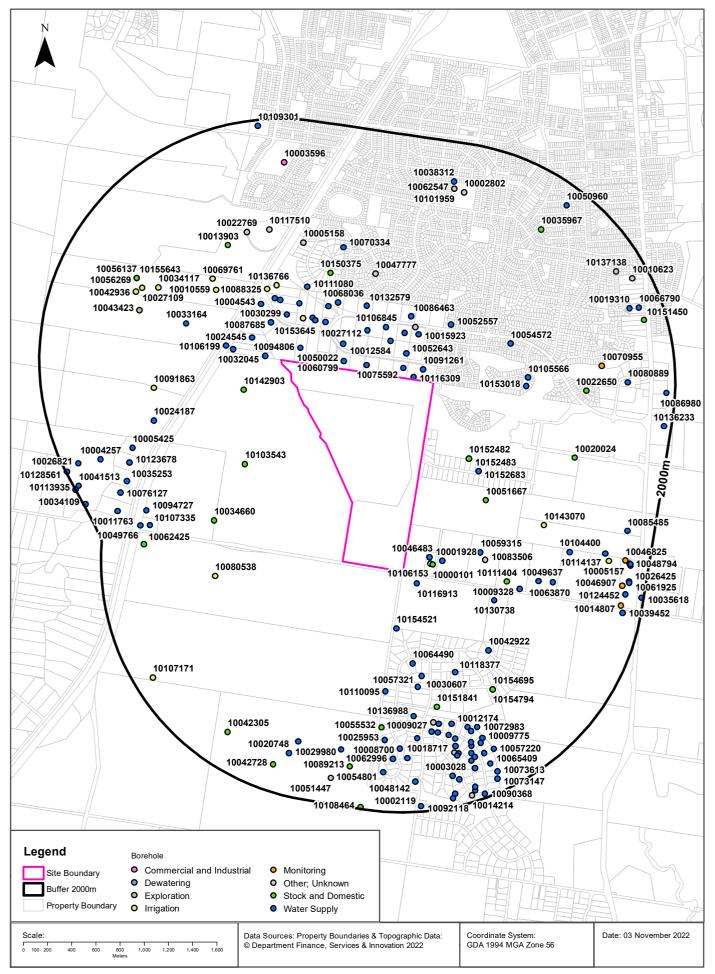
Hydrogeology

Description of aquifers within the dataset buffer:

Description	Distance	Direction
Porous, extensive highly productive aquifers	0m	On-site
Fractured or fissured, extensive aquifers of low to moderate productivity	0m	On-site

Hydrogeology Map of Australia : Commonwealth of Australia (Geoscience Australia) Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Temporary Water Restriction (Botany Sands Groundwater Source) Order 2018


Temporary water restrictions relating to the Botany Sands aquifer within the dataset buffer:

Prohibition Area No.	Prohibition	Distance	Direction
N/A	No records in buffer		

Temporary Water Restriction (Botany Sands Groundwater Source) Order 2018 Data Source : NSW Department of Primary Industries

Groundwater Boreholes

Hydrogeology & Groundwater

Burgmanns Lane Warral, Tamworth, NSW 2340

Groundwater Boreholes

Boreholes within the dataset buffer:

NGIS Bore ID	NSW Bore ID	Bore Type	Status	Drill Date	Bore Depth (m)	Reference Elevation		Salinity (mg/L)	Yield (L/s)	SWL (mbgl)	Distance	Direction
10116309	GW969695	Water Supply	Functioning	07/07/1991	48.70		AHD		0.600		19m	North East
10095536	GW052883	Water Supply	Unknown	01/03/1980	24.30		AHD				60m	North
10060799	GW965284	Water Supply	Unknown	05/10/2001	61.00		AHD		0.640	7.00	65m	North
10075592	GW052811	Water Supply	Unknown	01/01/1981	68.30		AHD				80m	North
10091261	GW900606	Water Supply	Unknown	06/02/1996	79.20		AHD				93m	North East
10050022	GW012680	Water Supply	Unknown	01/10/1955	30.48		AHD				122m	North West
10094806	GW016468	Water Supply	Unknown	01/01/1955	28.30		AHD	Good			132m	North West
10116913	GW056032	Water Supply	Unknown	01/09/1982	28.00		AHD				154m	South
10046483	GW902547	Water Supply	Unknown	01/06/1998	97.56		AHD		0.180	19.00	197m	South East
10052643	GW070730	Water Supply	Unknown	04/12/1992	56.40	420.00	AHD				206m	North
10087651	GW966018	Water Supply	Unknown	09/09/2003	73.10		AHD		0.500	16.70	208m	North
10106153	GW070613	Unknown	Abandoned	15/03/1993	71.00		AHD				215m	South East
10000101	GW045909	Stock and Domestic	Functioning	01/03/1977	23.00		AHD	Good			234m	South East
10012584	GW969497	Water Supply	Functioning	11/10/2007	42.70		AHD		0.380	7.00	288m	North
10024545	GW014235	Water Supply	Unknown	01/08/1958	21.00		AHD	Good Stock			300m	North West
10001928	GW035223	Water Supply	Unknown	01/01/1972			AHD				307m	South East
10087685	GW035323	Water Supply	Unknown	01/04/1973	27.70		AHD	Hard			320m	North West
10027112	GW070958	Water Supply	Unknown	09/09/1993	50.30		AHD				346m	North
10153645	GW971373	Water Supply	Functioning	30/11/2015	121.00		AHD				364m	North West
10113206	GW902287	Water Supply	Unknown	12/02/2000	61.00		AHD	Potable	0.500	12.20	365m	North
10134316	GW014325	Irrigation	Unknown	01/09/1959	34.10		AHD	1001- 3000 ppm			369m	North West
10096529	GW900254	Water Supply	Unknown	18/11/1991	27.40		AHD				370m	North
10015923	GW056193	Water Supply	Unknown	01/01/1982	30.00		AHD				375m	North
10030299	GW056834	Water Supply	Unknown	01/01/1983	60.90		AHD				378m	North West
10054643	GW018796	Water Supply	Unknown	01/10/1960	27.40		AHD				382m	North West
10142903	GW024074	Stock and Domestic	Functioning	01/08/1965	36.60		AHD	501-1000 ppm			382m	North West
10152482	GW903384	Stock and Domestic	Functioning	09/08/2019	78.00		AHD				391m	East
10152483	GW903384	Stock and Domestic	Functioning	09/08/2019	78.00		AHD				391m	East
10106845	GW072006	Water Supply	Unknown	15/06/1994	44.20		AHD				395m	North

NGIS Bore ID	NSW Bore ID	Bore Type	Status	Drill Date	Bore Depth (m)	Reference Elevation	Height Datum	Salinity (mg/L)	Yield (L/s)	SWL (mbgl)	Distance	Direction
10032045	GW902574	Water Supply	Unknown	10/06/2000	34.70		AHD				404m	North West
10036215	GW070951	Unknown	Unknown	15/09/1993		420.00	AHD				431m	North
10106199	GW902088	Water Supply	Unknown	23/12/1999	28.00		AHD				469m	North West
10154521	GW971592	Water Supply	Functioning	26/04/2016	58.50		AHD				479m	South
10152683	GW903693	Water Supply	Functioning	20/02/2020	96.00		AHD				485m	East
10008562	GW058334	Water Supply	Unknown	01/02/1984	36.50		AHD				486m	North West
10004543	GW043963	Water Supply	Unknown	01/06/1975	52.40		AHD				490m	North West
10108029	GW052043	Water Supply	Unknown	01/10/1980	54.80		AHD				495m	North
10141884	GW019308	Water Supply	Unknown	01/05/1962	47.90		AHD	1001- 3000 ppm			497m	North West
10052557	GW968174	Water Supply	Functioning	17/04/2007	79.20		AHD		0.080	16.10	500m	North East
10037706	GW067688	Water Supply	Unknown	29/05/1989	79.50		AHD	Good			511m	North West
10086463	GW068999	Water Supply	Unknown	26/10/1992	58.50		AHD	Good			516m	North
10068036	GW965111	Water Supply	Unknown	11/07/2001	65.24		AHD		0.280	15.24	539m	North
10132579	GW902795	Water Supply	Unknown	24/10/1993	58.80		AHD	500		13.00	548m	North
10051667	GW023639	Stock and Domestic	Unknown	01/11/1965	18.30		AHD	Hard			585m	South East
10088325	GW011439	Irrigation	Unknown	01/09/1955	68.90		AHD				597m	North West
10059315	GW044970	Water Supply	Unknown	01/06/1976	26.00		AHD	Good			609m	South East
10136766	GW013794	Irrigation	Unknown	01/07/1957	30.50		AHD	501-1000 ppm			620m	North West
10111080	GW966730	Water Supply	Unknown	14/11/2003	220.00		AHD	FF		150.00	630m	North
10103543	GW003359	Stock and Domestic	Unknown	01/08/1935	18.60		AHD	Good			657m	West
10083506	GW070735	Unknown	Unknown	25/02/1993	93.00		AHD				659m	South East
10054572	GW968128	Water Supply	Functioning	07/12/2006	47.80		AHD		16.000	6.00	716m	North East
10064490	GW966327	Water Supply	Unknown	10/12/2003	48.70		AHD		0.250	19.80	769m	South
10153018	GW903625	Water Supply	Functioning	10/01/2020	48.00		AHD				769m	North East
10150375	GW904193	Stock and Domestic	Functioning	19/02/2020	68.00		AHD				773m	North
10105566	GW968448	Water Supply	Functioning	05/05/2008	36.00		AHD		0.600	5.00	783m	North East
10010559	GW047276	Irrigation	Removed	01/01/1974	6.70		AHD				789m	North West
10130738	GW049802	Water Supply	Unknown	01/08/1979	27.40		AHD				793m	South
10047777	GW010559	Unknown	Unknown	01/01/1953	24.40		AHD				822m	North
10033164	GW969397	Water Supply	Functioning	03/03/2010	25.00		AHD		0.900	4.80	838m	North West
10111404	GW070059	Stock and Domestic	Unknown	01/01/1992			AHD				861m	South
10069761	GW047275	Irrigation	Removed	01/01/1974	6.70		AHD				876m	North West
10030607	GW068848	Water Supply	Unknown	08/12/1990	50.00		AHD	Good			882m	South
10118377	GW970815	Water Supply	Functioning	09/03/2014	41.00		AHD	680	0.440	7.00	941m	South
10042922	GW969435	Water Supply	Removed	19/04/2007	97.50		AHD				965m	South East

NGIS Bore ID	NSW Bore ID	Bore Type	Status	Drill Date	Bore Depth (m)	Reference Elevation		Salinity (mg/L)	Yield (L/s)	SWL (mbgl)	Distance	Direction
10057321	GW971048	Water Supply	Functioning	06/09/2014	70.00		AHD	Potable	0.310	16.00	968m	South
10009328	GW037657	Water Supply	Unknown	01/08/1973	42.60		AHD				977m	South East
10005158	GW068498	Unknown	Unknown	01/06/1990	64.00		AHD	Good	0.200	17.00	988m	North
10070334	GW970137	Water Supply	Functioning	04/11/2011	172.00		AHD	potable	0.510	19.80	997m	North
10110095	GW971291	Water Supply	Functioning	02/12/2014	49.50		AHD		1.625	25.00	1006m	South
10013903	GW902776	Stock and Domestic	Unknown	29/09/1995	36.60		AHD		0.370		1046m	North West
10080538	GW024392	Irrigation	Unknown	01/09/1965	29.30		AHD				1061m	South
10091863	GW054744	Irrigation	Proposed	01/08/1981	18.20		AHD				1076m	West
10117510	GW059228	Other	Unknown	01/04/1982	34.70		AHD	1001- 3000 ppm			1084m	North West
10143070	GW042841	Irrigation	Unknown		17.70		AHD	1001- 3000 ppm			1092m	South
10022769	GW900118	Unknown	Unknown	29/09/1995	42.70		AHD	coco pp	0.880		1096m	North West
10034660	GW013888	Stock and Domestic	Unknown	01/05/1958	76.20		AHD	Stock			1103m	South West
10049637	GW035739	Water Supply	Unknown	01/02/1973	36.80		AHD				1122m	South East
10024187	GW966256	Water Supply	Unknown	10/02/2004	16.80		AHD		2.520	4.00	1158m	West
10151841	GW904268	Stock and Domestic	Functioning	30/05/2019	30.50		AHD				1160m	South
10034117	GW054746	Irrigation	Proposed	01/08/1981	15.20		AHD				1178m	North West
10136988	GW968819	Water Supply	Functioning	21/09/2004	43.20		AHD	1447	0.500	17.90	1206m	South
10154695	GW904014	Stock and Domestic	Functioning	21/03/2019	110.00		AHD				1230m	South East
10154794	GW904014	Stock and Domestic	Functioning	21/03/2019	110.00		AHD				1230m	South East
10043423	GW047835	Exploration	Unknown	01/09/1980	30.40		AHD				1239m	North West
10063870	GW967466	Water Supply	Unknown				AHD				1240m	South East
10020024	GW003362	Stock and Domestic	Unknown	01/08/1935	20.10		AHD	Good			1254m	East
10022650	GW013346	Stock and Domestic	Functioning	01/01/1956			AHD				1267m	East
10009027	GW067568	Unknown	Unknown	06/11/1989	48.70		AHD		0.450		1278m	South
10027109	GW047836	Irrigation	Unknown	01/09/1980	30.40		AHD				1292m	North West
10096997	GW071940	Water Supply	Unknown	01/01/1982	27.40		AHD		0.500		1303m	South
10055532	GW902819	Stock and Domestic	Unknown	03/04/2017	109.00		AHD			0.00	1308m	South
10042936	GW054745	Irrigation	Proposed	01/08/1981	18.20		AHD				1325m	North West
10018025	GW061087	Water Supply	Unknown	01/05/1985	23.40		AHD				1329m	South
10104400	GW965359	Water Supply	Unknown	06/03/2002	13.70		AHD			4.50	1338m	South East
10061943	GW968122	Water Supply	Functioning	08/03/2007	30.50		AHD		0.630	20.40	1352m	South
10056137	GW902873	Stock and Domestic	Unknown	26/05/2017	16.00		AHD			0.00	1369m	North West
10056269	GW902884	Stock and Domestic	Unknown	26/05/2017	16.00		AHD			0.00	1369m	North West
10155643	GW903873	Stock and Domestic	Unknown	26/05/2017	16.00		AHD				1369m	North West
10071720	GW068116	Water Supply	Unknown	15/01/1987	24.30		AHD		0.750	8.20	1370m	South

NGIS Bore ID	NSW Bore ID	Bore Type	Status	Drill Date	Bore Depth (m)	Reference Elevation	Height Datum	Salinity (mg/L)	Yield (L/s)	SWL (mbgl)	Distance	Direction
10018717	GW069089	Water Supply	Unknown	15/02/1991	34.00		AHD	Good			1392m	South
10070955	GW068658	Monitoring	Proposed	22/11/1991	44.00		AHD	Good			1400m	East
10012174	GW063973	Water Supply	Unknown	01/05/1987	37.50		AHD				1401m	South
10025953	GW965102	Water Supply	Unknown	24/06/2000	114.30		AHD				1408m	South
10018998	GW056558	Water Supply	Unknown	01/11/1982	28.90		AHD				1411m	South
10005425	GW043677	Water Supply	Unknown	01/12/1973	18.90		AHD				1416m	West
10072983	GW062538	Water Supply	Unknown	01/03/1984	21.30		AHD				1432m	South
10019225	GW054888	Water Supply	Unknown	01/01/1981	34.70		AHD				1440m	South
10126884	GW056774	Water Supply	Unknown	01/11/1982	33.50		AHD				1455m	South
10008700	GW968043	Water Supply	Functioning	01/02/2007	79.20		AHD		0.220	27.00	1472m	South
10123678	GW045421	Water Supply	Unknown	01/12/1976	15.80		AHD	1001- 3000 ppm			1498m	West
10033611	GW071956	Water Supply	Unknown	01/12/1990	53.00		AHD	oooo ppin	0.900		1514m	South
10105571	GW065553	Water Supply	Unknown	09/11/1988	49.60		AHD				1526m	South
10009775	GW068114	Water Supply	Unknown	01/01/1985	26.00		AHD			19.50	1532m	South
10029980	GW056105	Water Supply	Unknown	01/05/1980	79.80		AHD				1538m	South
10115997	GW901276	Water Supply	Unknown	06/04/1994	93.00		AHD				1541m	South
10035967	GW011061	Stock and Domestic	Unknown	01/01/1954	46.00		AHD	501-1000 ppm			1549m	North East
10034375	GW966243	Water Supply	Unknown	09/02/2004	67.00		AHD		0.750	42.60	1553m	South
10101681	GW064231	Water Supply	Unknown	01/05/1987	18.90		AHD				1555m	South
10094727	GW902677	Water Supply	Unknown	28/04/1999	79.20		AHD				1556m	West
10062996	GW969222	Water Supply	Functioning	01/11/2006	90.00		AHD		0.150	50.00	1558m	South
10089538	GW901473	Water Supply	Unknown	01/01/1989	27.00		AHD				1563m	South
10023929	GW067555	Unknown	Unknown	03/05/1989	36.50		AHD		0.020	10.60	1565m	South
10017271	GW070035	Water Supply	Unknown	30/06/1988	23.00		AHD	Good			1580m	South
10107335	GW048480	Water Supply	Unknown	01/07/1978	33.50		AHD				1583m	West
10035253	GW048398	Water Supply	Unknown	01/02/1978	15.30		AHD				1594m	West
10002802	GW060277	Other	Unknown	01/09/1985			AHD				1595m	North
10084195	GW902122	Water Supply	Unknown	04/05/1994	44.00		AHD				1595m	South
10080889	GW013345	Water Supply	Functioning	01/01/1956			AHD				1608m	East
10062547	GW065955	Other	Unknown	30/11/1989	101.00		AHD				1612m	North
10101959	GW065954	Other	Unknown	21/10/1991	95.00		AHD	Good			1612m	North
10018191	GW056489	Water Supply	Unknown	01/09/1982	48.70		AHD				1613m	South
10114137	GW055344	Water Supply	Unknown	01/05/1981	22.60		AHD				1631m	South East
10003596	GW021645	Commercial and Industrial	Unknown	01/06/1964	22.60		AHD	Stock			1637m	North
10020748	GW052943	Water Supply		01/05/1980	79.80		AHD				1649m	South
10062425	GW043096	Stock and Domestic	Unknown	01/06/1974	26.20		AHD				1649m	West
10072151	GW055611	Water Supply	Unknown	01/10/1981	40.80		AHD				1651m	South

NGIS Bore ID	NSW Bore ID	Bore Type	Status	Drill Date	Bore Depth (m)	Reference Elevation		Salinity (mg/L)	Yield (L/s)	SWL (mbgl)	Distance	Direction
10099885	GW056831	Water Supply	Unknown	01/01/1983	28.30		AHD				1651m	South
10049766	GW048484	Water Supply	Unknown	01/08/1978	30.40		AHD				1654m	West
10057220	GW063923	Water Supply	Unknown	01/01/1987	24.30		AHD				1656m	South
10005157	GW037812	Irrigation	Unknown		36.20		AHD				1668m	South East
10089213	GW024401	Stock and Domestic	Unknown	01/11/1965	30.50		AHD				1670m	South
10003028	GW071934	Water Supply	Unknown	01/01/1985	39.50		AHD				1671m	South
10038312	GW902185	Water Supply	Unknown	21/10/1991	95.00		AHD				1673m	North
10054801	GW967990	Water Supply	Abandoned	26/02/2007	91.40		AHD				1677m	South
10076127	GW049805	Water Supply	Unknown	01/02/1978	12.80		AHD				1682m	West
10004257	GW043678	Water Supply	Proposed	01/12/1973	12.50		AHD				1694m	West
10042305	GW043097	Stock and Domestic	Unknown	01/06/1974	29.20		AHD				1703m	South West
10019310	GW034588	Water Supply	Unknown	01/01/1972	22.20		AHD				1736m	North East
10071674	GW063979	Water Supply	Unknown	01/05/1987	31.30		AHD				1738m	South
10070538	GW902451	Water Supply	Unknown		22.50		AHD			6.50	1747m	South
10048142	GW968017	Water Supply	Functioning	27/02/2007	48.80		AHD		0.500	33.20	1748m	South
10065409	GW063930	Water Supply	Functioning	01/01/1987	22.80		AHD				1753m	South
10137138	GW015487	Unknown	Unknown	01/09/1951	26.80		AHD	501-1000 ppm			1770m	North East
10011763	GW048456	Water Supply	Unknown	01/07/1977	22.30		AHD	1001- 3000 ppm			1775m	West
10042728	GW024399	Stock and Domestic	Unknown	01/11/1965	22.90		AHD				1778m	South
10085485	GW037695	Water Supply	Unknown	01/12/1974	31.30		AHD				1781m	East
10051447	GW031642	Unknown	Unknown	01/02/1967	70.10		AHD				1789m	South
10084378	GW071960	Water Supply	Functioning	01/01/1989	24.00		AHD			24.00	1789m	South
10046825	GW900737	Monitoring	Abandoned	10/06/1997	54.90		AHD				1803m	South East
10046907	GW900738	Monitoring	Abandoned	12/06/1997	97.50		AHD				1810m	South East
10066790	GW966714	Water Supply	Unknown	01/05/1992	36.00		AHD		16.000		1810m	North East
10151450	GW904273	Stock and Domestic	Functioning	16/01/2019	33.00		AHD				1819m	North East
10014807	GW900739	Monitoring	Unknown	16/06/1997	91.40		AHD				1826m	South East
10073613	GW071977	Water Supply	Unknown	16/05/2000			AHD				1835m	South
10050960	GW007701	Water Supply	Unknown	01/08/1948	55.80		AHD	1001- 3000 ppm			1836m	North East
10107171	GW024034	Irrigation	Unknown	01/09/1965	14.60		AHD				1840m	South West
10048794	GW901196	Water Supply	Removed	12/06/1997	97.50		AHD				1843m	South
10124452	GW037718	Water Supply	Unknown	01/09/1974	33.50		AHD				1848m	South
10039452	GW054976	Water Supply	Unknown		22.90		AHD	Domestic			1850m	South
10103609	GW901194	Water Supply	Unknown	17/07/1997	61.00		AHD				1850m	South East
10085893	GW901197	Water Supply	Removed	16/06/1997	91.40		AHD				1851m	South East

NGIS Bore ID	NSW Bore ID	Bore Type	Status	Drill Date	Bore Depth (m)	Reference Elevation	Height Datum	Salinity (mg/L)	Yield (L/s)	SWL (mbgl)	Distance	Direction
10010623	GW013886	Unknown	Unknown	01/01/1948	21.30		AHD	Hard			1857m	North East
10026425	GW902179	Water Supply	Unknown	17/07/1997	61.00		AHD				1861m	South East
10061925	GW901195	Water Supply	Removed	10/06/1997	54.90		AHD				1864m	South East
10026821	GW043680	Water Supply	Unknown	01/12/1973	22.90		AHD				1874m	West
10095444	GW063922	Water Supply	Unknown	01/01/1987	24.30		AHD				1884m	South
10073147	GW071942	Water Supply	Unknown		26.00		AHD		2.200	24.50	1891m	South
10055418	GW902892	Water Supply	Functioning	16/05/2018	33.50		AHD			17.00	1896m	South
10015883	GW056731	Water Supply	Unknown	01/10/1982	40.20		AHD				1913m	South
10092118	GW902274	Water Supply	Unknown	01/11/1988	25.00		AHD		1.500		1927m	South
10086980	GW015466	Water Supply	Unknown	01/02/1958	19.50		AHD				1930m	East
10136233	GW019318	Water Supply	Unknown	01/06/1962	25.90		AHD	1001- 3000 ppm			1941m	East
10014214	GW068082	Unknown	Unknown	04/08/1989	36.50		AHD		0.500	11.50	1945m	South
10109301	GW049638	Water Supply	Unknown	01/08/1978	15.20		AHD				1950m	North
10002119	GW059771	Water Supply	Unknown	01/06/1984	27.00		AHD				1955m	South
10041513	GW043679	Water Supply	Unknown	01/12/1973	17.70		AHD				1960m	West
10090368	GW071959	Water Supply	Unknown	01/01/1980	12.00		AHD	Good		9.75	1967m	South
10034109	GW043681	Water Supply	Unknown	01/12/1973	24.40		AHD				1984m	West
10035618	GW046726	Water Supply	Unknown	01/04/1977	53.00		AHD				1984m	South East
10108464	GW031643	Stock and Domestic	Unknown	01/02/1967	57.90		AHD				1989m	South
10128561	GW062122	Water Supply	Functioning	01/01/1970	2.50		AHD			2.50	1989m	West
10113935	GW072015	Water Supply	Unknown	03/03/1994	19.50		AHD				1997m	West

Borehole Data Source: Bureau of Meteorology; Water NSW. Creative Commons 3.0 $\Circle Commonwealth$ of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Hydrogeology & Groundwater

Burgmanns Lane Warral, Tamworth, NSW 2340

Driller's Logs

Drill log data relevant to the boreholes within the dataset buffer:

NGIS Bore ID	Drillers Log	Distance	Direction
10116309	0.00m-0.60m Soil 0.60m-1.30m Clay, ridge 1.30m-6.70m Shale, yellow 6.70m-18.30m Shale, brown 18.30m-43.60m Basalt, blue 43.60m-43.90m Basalt, blue, water bearing 43.90m-48.70m Basalt, blue	19m	North East
10095536	0.00m-0.60m Topsoil 0.60m-3.60m Shale Yellow 3.60m-14.60m Shale 14.60m-24.30m Shale Water Supply	60m	North
10060799	0.00m-1.50m topsoil 1.50m-1.76m red clay 1.76m-28.96m blue shale 28.96m-61.00m basalt	65m	North
10075592	0.00m-0.91m Soil 0.91m-1.52m Shale 1.52m-13.72m Shale 1.52m-13.72m Seams 13.72m-14.63m Shale Water Supply 14.63m-67.06m Shale Very Hard 14.63m-67.06m Basalt Seams 67.06m-67.67m Basalt Broken Water Supply 67.67m-68.28m Basalt Water Supply	80m	North
10091261	0.00m-0.90m TOP SOIL 0.90m-14.00m BROWN SHALE 14.00m-16.70m BASALT 16.70m-17.00m WATER BEARING BASALT 17.00m-27.40m BASALT 27.40m-27.70m WATER BEARING BASALT 27.70m-73.10m BASALT 73.10m-73.40m WATER BEARING BASALT 73.40m-79.20m BASALT	93m	North East
10050022	0.00m-4.57m Subsoil Clay 4.57m-30.48m Shale Water Supply	122m	North West
10094806	0.00m-0.91m Clay 0.91m-28.35m Shale Water Supply	132m	North West
10116913	0.00m-1.50m Soil 1.50m-19.00m Shale Grey 19.00m-28.00m Mudstone Grey Water Supply	154m	South
10046483	0.00m-0.30m loamy clay 0.30m-67.07m shale 67.07m-89.63m basalt 89.63m-97.56m basalt	197m	South East
10052643	0.00m-0.90m Soil 0.90m-12.20m shale brown 12.20m-54.90m Basalt - blue 54.90m-55.20m Basalt w.b 55.20m-56.40m Basalt - blue	206m	North
10087651	0.00m-0.30m topsoil 0.30m-1.20m clay 1.20m-7.30m shale 7.30m-18.30m basalt 18.30m-18.60m water bearing basalt 18.60m-54.80m basalt 54.80m-55.00m water bearing basalt 55.00m-70.00m basalt 70.00m-70.30m water bearing basalt 70.30m-73.10m basalt	208m	North
10106153	0.00m-4.00m CLAY 4.00m-21.00m BROWN SHALE 21.00m-71.00m GREY SHALE	215m	South East

NGIS Bore ID	Drillers Log	Distance	Direction
10000101	0.00m-0.50m Topsoil Black 0.50m-1.00m Clay 1.00m-10.00m Shale Soak 10.00m-22.00m Basalt Hard Shale Water Supply 22.00m-23.00m Basalt Black	234m	South East
10012584	0.00m-0.30m Topsoil 0.30m-23.80m Shale, brown 23.80m-24.10m Basalt, water bearing 24.10m-33.50m Basalt 33.50m-33.80m Basalt, water bearing 33.80m-39.60m Basalt 39.60m-39.90m Basalt, water bearing 39.90m-42.70m Basalt	288m	North
10024545	0.00m-0.61m Soil Red 0.61m-9.14m Shale 9.14m-13.72m Shale Black 13.72m-20.42m Water Supply 20.42m-21.03m Basalt	300m	North West
10087685	0.00m-0.61m Soil 0.61m-3.96m Clay Yellow 3.96m-10.67m Shale 10.67m-15.24m Basalt 15.24m-16.76m Shale 16.76m-26.82m Shale Grey Water Supply 26.82m-27.74m Shale	320m	North West
10027112	0.00m-0.60m SOIL 0.60m-14.30m BROWN SHALE 14.30m-15.50m CLAY 15.50m-16.50m BROWN SHALE 16.50m-16.80m W.B. BROWN SHALE 16.80m-27.50m BROWN SHALE 27.50m-27.80m W.B. BROWN SHALE 27.80m-45.50m BROWN SHALE 45.50m-45.80m W.B. BROWN SHALE 45.80m-46.10m BLUE SHALE 46.10m-50.30m BLUE BASALT	346m	North
10113206	0.00m-0.30m topsoil 0.30m-6.10m shale 6.10m-61.00m shale	365m	North
10134316	0.00m-0.30m Soil 0.30m-2.74m Clay 2.74m-5.49m Shale 5.49m-34.14m Shale	369m	North West
10096529	0.00m-0.90m SURFACE SOIL 0.90m-6.30m YELLOW SHALE 6.30m-21.30m BROWN SHALE 21.30m-21.60m WATER BEARING BROWN SHALE 21.60m-22.20m BLUE SHALE 22.20m-25.20m BROWN SHALE 25.20m-25.50m WATER BEARING BROWN SHALE 25.50m-26.70m BROWN SHALE 26.70m-27.40m BLUE BASALT	370m	North
10015923	0.00m-0.30m Surface Red Soil 0.30m-2.00m Clay Red 2.00m-10.00m Shale 10.00m-22.00m Shale Water Supply 22.00m-24.00m Basalt Broken 24.00m-26.00m Basalt Water Supply 26.00m-30.00m Basalt	375m	North
10030299	0.00m-1.00m Topsoil 1.00m-2.80m Shale Yellow 2.80m-23.40m Shale 23.40m-60.90m Basalt Water Supply	378m	North West
10054643	0.00m-0.61m Topsoil 0.61m-4.27m Clay 4.27m-18.90m Shale 18.90m-19.20m Shale Soft Water Supply 19.20m-27.43m Shale	382m	North West
10142903	0.00m-36.58m Shale	382m	North West
10106845	0.00m-0.30m Soil 0.30m-24.70m Shale brown 24.70m-26.50m Basalt blue 26.50m-27.50m Shale brown 27.50m-27.80m Shale brown w.b 27.80m-38.20m Shale brown 38.20m-38.50m Shale brown 38.50m-41.20m Shale brown 41.20m-44.20m Basalt blue	395m	North

NGIS Bore ID	Drillers Log	Distance	Direction
10032045	0.00m-1.00m topsoil 1.00m-34.70m shale	404m	North West
10036215	0.00m-0.30m topsoil 0.30m-14.90m shale 14.90m-15.40m shale 15.40m-15.70m water bearing shale 15.70m-17.80m shale 17.80m-18.10m shale 18.10m-21.40m shale 21.40m-21.70m water bearing shale 21.70m-24.40m shale 24.40m-25.90m basalt	431m	North
10106199	0.00m-1.00m topsoil 1.00m-18.00m shale 18.00m-20.00m shale 20.00m-25.00m shale 25.00m-26.00m shale 26.00m-28.00m shale	469m	North West
10008562	0.00m-0.60m Topsoil 0.60m-16.70m Shale Yellow 16.70m-17.00m Shale Water Bearing 17.00m-33.40m Basalt 33.40m-33.70m Shale Water Supply 33.70m-36.50m Basalt	486m	North West
10004543	0.00m-0.30m Topsoil 0.30m-2.74m Clay 2.74m-3.35m Clay Broken Shale 3.35m-15.85m Shale Water Supply 15.85m-18.29m Shale Grey 18.29m-23.16m Rock Light Grey Hard 23.16m-34.14m Shale Grey 34.14m-44.81m Shale Water Supply 44.81m-45.72m Rock Light Grey Green 45.72m-52.43m Slate Water Supply	490m	North West
10108029	0.00m-0.60m Soil Surface 0.60m-15.20m Shale Yellow 15.20m-15.50m Shale 15.50m-54.80m Shale	495m	North
10141884	0.00m-1.52m Topsoil 1.52m-4.57m Clay Red 4.57m-7.62m Clay Shale 7.62m-15.24m Shale Black Grey 15.24m-47.85m Shale Black Water Supply 47.85m-47.87m Slate	497m	North West
10052557	0.00m-0.30m Topsoil 0.30m-0.90m Clay 0.90m-16.40m Shale, brown (Seepage) 16.40m-22.40m Basalt 22.40m-33.70m Basalt, water bearing 33.70m-62.30m Basalt 62.30m-62.60m Basalt, water bearing 62.60m-79.20m Basalt	500m	North East
10037706	0.00m-0.30m Brown Surface Soil 0.30m-5.00m Brown Clay 5.00m-79.50m Blue Shales	511m	North West
10086463	0.00m-0.30m BROWN TOPSOIL 0.30m-3.00m BROWN CLAY 3.00m-21.00m BROWN SHALE 21.00m-30.00m BLUE SHALE 30.00m-58.50m BLUE BASALT	516m	North
10068036	0.00m-1.22m topsoil 1.22m-13.72m shale 13.72m-15.24m mudstone 15.24m-17.07m shale 17.07m-26.83m shale 26.83m-27.44m shale 27.44m-65.24m shale	539m	North
10132579	0.00m-0.90m Loamy clay brown 0.90m-4.20m L/Brown Fractured Shale 4.20m-7.20m Brown Frac. Shale 7.20m-24.00m Hard dark and grey shale 24.00m-26.10m Decomposed Shale 26.10m-28.50m Soild Dark Grey Shale 28.50m-46.80m Light Grey Shale 46.80m-58.80m Fractured Grey Shale	548m	North
10051667	0.00m-0.91m Topsoil 0.91m-2.74m Clay 2.74m-18.29m Shale Water Supply	585m	South East

NGIS Bore ID	Drillers Log	Distance	Direction
10088325	0.00m-2.44m Clay 2.44m-17.68m Shale 17.68m-37.49m Slate Black 37.49m-38.40m Slate Black Calcite 38.40m-43.59m Slate Black Grey Some Calcite 43.59m-63.70m Slate Black 63.70m-68.88m Basalt Water Supply	597m	North West
10059315	0.00m-0.50m Topsoil 0.50m-24.00m Shale Hard Clay 24.00m-26.00m Basalt Black	609m	South East
10136766	0.00m-0.61m Topsoil 0.61m-3.66m Clay Red 3.66m-12.19m Shale 12.19m-12.50m Shale Yellow Water Bearing 12.50m-24.38m Shale 24.38m-28.04m Sandstone Or Water Bearing Tuff 28.04m-28.96m Shale Black 28.96m-30.48m Shale Soft Water Bearing 28.96m-30.48m Mud Layers	620m	North West
10103543	0.00m-9.14m Shale Hard 9.14m-17.07m Shale Water Supply 17.07m-18.59m Rock Hard	657m	West
10083506	0.00m-0.60m SOIL 0.60m-18.30m YELLOW SHALE 18.30m-26.30m BNLUE SHALE 26.30m-26.80m W.B. SHALE (.25L/S) 26.80m-93.00m BLUE BASALT	659m	South East
10064490	0.00m-0.30m topsoil 0.30m-21.30m shale/brown 21.30m-21.60m basalt/water bearing 21.60m-30.40m basalt 30.40m-30.70m basalt/water bearing 30.70m-48.70m basalt	769m	South
10105566	0.00m-1.00m Topsoil 1.00m-4.50m Clay 4.50m-12.00m Shale, weathered 12.00m-36.00m Shale	783m	North East
10130738	0.00m-0.61m Soil Surface 0.00m-0.61m Shale Weathered 0.61m-5.49m Shale 5.49m-10.36m Basalt Grey 10.36m-22.25m Slate 10.36m-22.25m Basalt Seams 22.25m-22.56m Slate Green Water Supply 22.56m-25.30m Basalt 25.30m-25.91m Slate Green Broken Water Supply 25.91m-26.52m Basalt Some Water Supply 26.52m-27.43m Basalt	793m	South East
10047777	0.00m-0.91m Subsoil 0.91m-15.24m Shale 15.24m-24.38m Shale Water Supply	822m	North
10033164	0.00m-6.00m Clay, brown, loamy 6.00m-16.80m Shale, brown 16.80m-25.00m Shale, blue, fractured	838m	North West
10030607	0.00m-0.90m Brown Clay 0.90m-50.00m Blue Shale	882m	South
10118377	0.00m-0.30m Sand/Topsoil 0.30m-41.00m Shale; very hard, grey	941m	South
10042922	0.00m-0.30m Topsoil 0.30m-18.30m Shale, brown 18.30m-97.50m Basalt, blue	965m	South East
10057321	0.00m-1.00m Clay; red 1.00m-2.00m Shale; fractured 2.00m-20.00m Shale; grey 20.00m-33.00m Shale; black 23.00m-30.00m Shale; black 40.00m-70.00m Shale; grey	968m	South
10009328	0.00m-0.30m Soil 0.30m-4.57m Shale 4.57m-5.48m Shale 5.48m-11.58m Slate 11.58m-12.80m Slate Broken 12.80m-29.26m Slate 29.26m-29.87m Shale Water Supply 29.87m-35.66m Slate 35.66m-35.96m Shale Water Supply 35.96m-41.14m Slate 41.14m-42.67m Basalt	977m	South East

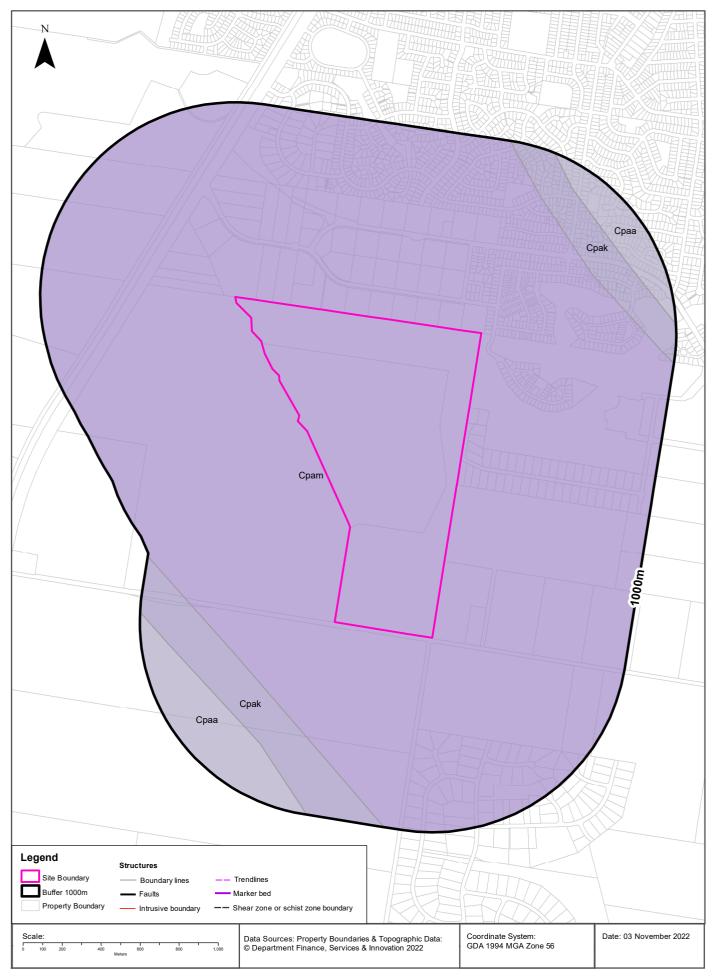
NGIS Bore ID	Drillers Log	Distance	Direction
10005158	0.00m-1.20m BROWN SHALE 1.20m-2.10m BROWN CLAY 2.10m-9.00m BLUE SHALE 9.00m-64.00m BLUE BASALT	988m	North
10070334	0.00m-0.15m Topsoil 0.15m-1.20m Clay, red 1.20m-18.30m Clay, brown/Shale 18.30m-19.80m Shale, brown 19.80m-82.30m Shale, blue 82.30m-97.60m Shale, blue, broken, hard 97.60m-103.70m Basalt, hard 103.70m-118.30m Shale, grey 118.30m-128.10m Shale, blue/black/grey 128.10m-172.00m Basalt, hard	997m	North
10110095	0.00m-0.30m Topsoil 0.30m-2.00m Clay 2.00m-49.50m Basalt; blue, fractured	1006m	South
10013903	0.00m-0.60m Soil 0.60m-5.50m Ridge clay 5.50m-14.60m Brown shale 14.60m-18.20m Blue basalt 18.20m-18.50m w.b. basalt 18.50m-30.40m Blue basalt 30.40m-30.70m w.b. basalt 30.70m-36.60m Blue basalt	1046m	North West
10080538	0.00m-1.22m Topsoil 1.22m-10.67m Shale 10.67m-29.26m Basalt Hard Water Supply	1061m	South West
10091863	0.00m-1.20m Topsoil 1.20m-5.10m Clay 5.10m-13.60m Shale Yellow 13.60m-14.20m Shale Water Supply 14.20m-18.20m Shale	1076m	West
10117510	0.00m-1.00m Topsoil Red 1.00m-4.00m Clay Red 4.00m-8.00m Shale Grey 8.00m-12.00m Shale 12.00m-15.00m Shale Some Clay Bands Water Supply 15.00m-30.00m Shale Water Supply 30.00m-34.70m Basalt	1084m	North West
10022769	0.00m-0.60m SOIL 0.60m-1.80m RIDGE CLAY 1.80m-15.20m BROWN SHALE 15.20m-19.80m BLUE SHALE 19.80m-20.10m W.B. BLUE SHALE 20.10m-36.60m BLUE SHALE 36.60m-36.90m W.B. BLUE SHALE 36.90m-42.70m BLUE BASALT	1096m	North West
10034660	0.00m-2.74m Clay Soft Shale 2.74m-9.14m Shale 9.14m-14.63m Shale 14.63m-18.29m Basalt Water Supply 18.29m-76.20m Diorite	1103m	South West
10049637	0.00m-0.91m Soil Red Volcanic 0.91m-3.04m Clay 3.04m-13.71m Shale Rock Water Supply 13.71m-18.28m Rock Volcanic 18.28m-36.88m Basalt Black Water Supply	1122m	South East
10024187	0.00m-1.00m topsoil 1.00m-5.80m clay 5.80m-7.60m brown shale 7.60m-8.20m water bearing brown shale 8.20m-14.30m brown shale 14.30m-15.30m water bearing shale 15.30m-16.80m basalt	1158m	West
10034117	0.00m-6.00m Clay 6.00m-12.10m Shale Yellow 12.10m-12.70m Shale Water Supply 12.70m-15.20m Shale	1178m	North West
10136988	0.00m-0.30m Topsoil, Loam 0.30m-1.20m Clay, brown 1.20m-2.40m Clay, loamy 2.40m-43.20m Shale, blue	1206m	South
10043423	0.00m-6.00m Soil 6.00m-6.40m Shale Yellow Water Bearing 6.40m-24.40m Shale Yellow 24.40m-27.40m Shale Water Supply 27.40m-30.40m Shale	1239m	North West

NGIS Bore ID	Drillers Log	Distance	Direction
10020024	0.00m-5.79m Shale 5.79m-12.50m Rock 12.50m-19.20m Rock Hard Water Supply 19.20m-20.12m Rock Grey	1254m	East
10009027	0.00m-0.30m Soil 0.30m-3.90m Clay 3.90m-15.40m Yellow Shale 15.40m-31.90m Blue Shale 31.90m-32.20m Water Bearing Shale 32.20m-48.70m Blue Basalt	1278m	South
10027109	0.00m-4.50m Soil 4.50m-7.50m Shale Yellow 7.50m-7.80m Shale Water Bearing 7.80m-18.20m Shale 18.20m-21.20m Shale Water Supply 21.20m-30.40m Shale	1292m	North West
10042936	0.00m-1.00m Topsoil 1.00m-6.20m Clay Yellow 6.20m-7.70m Shale Yellow Fractured Water Supply 7.70m-13.70m Shale Yellow 13.70m-18.20m Shale	1325m	North West
10018025	0.00m-0.60m Soil 0.60m-3.90m Clay 3.90m-4.80m Shale 4.80m-13.90m Shale Hard 13.90m-23.40m Shale Water Supply	1329m	South
10061943	0.00m-0.60m Topsoil 0.60m-2.70m Clay 2.70m-14.30m Shale, brown 14.30m-27.40m Basalt 27.40m-28.00m Basalt, water bearing 28.00m-30.50m Basalt	1352m	South
10071720	0.00m-0.60m Surface Soil 0.60m-5.20m Ridge Clay 5.20m-20.70m Yellow Shale 20.70m-21.00m Water Bearing Shale 21.00m-24.30m Yellow Shale	1370m	South
10018717	0.00m-0.50m 0.50m-6.00m Brown Shale 6.00m-7.00m Red Clay 7.00m-30.00m Black Shale 30.00m-34.00m	1392m	South
10070955	0.00m-3.00m Brown Clay 3.00m-20.00m Shales. 20.00m-44.00m	1400m	East
10012174	0.00m-0.60m Soil Surface 0.60m-5.50m Clay Ridge 5.50m-18.30m Shale Yellow 18.30m-35.10m Basalt 35.10m-35.40m Basalt Water Bearing Water Supply 35.40m-37.50m Basalt	1401m	South
10025953	0.00m-0.30m topsoil 0.30m-5.50m brown shale 5.50m-18.30m shale 18.30m-85.30m basalt 85.60m water bearing basalt 85.60m-111.50m basalt 111.50m-111.80m water bearing basalt 111.80m-114.30m basalt	1408m	South
10018998	0.00m-0.60m Soil 0.60m-3.60m Clay 3.60m-28.90m Shale Water Supply	1411m	South
10005425	0.00m-0.61m Soil 0.61m-2.74m Clay Gravel 2.74m-6.71m Shale 6.71m-18.90m Basalt Water Supply	1416m	West
10072983	0.00m-0.60m Soil Surface 0.60m-18.20m Shale Yellow 18.20m-21.30m Shale Water Supply	1432m	South
10019225	0.00m-0.61m Topsoil 0.61m-3.66m Clay Red 3.66m-5.18m Shale Soft 5.18m-14.63m Shale 14.63m-15.24m Shale Weathered 15.24m-19.51m Shale 19.51m-20.73m Shale Broken Water Supply 20.73m-29.87m Shale 29.87m-31.70m Shale Green Broken Water Supply 31.70m-34.75m Shale	1440m	South

NGIS Bore ID	Drillers Log	Distance	Direction
10126884	0.00m-0.60m Soil 0.60m-3.60m Shale Yellow 3.60m-21.20m Shale 21.20m-33.50m Shale Water Supply	1455m	South
10008700	0.00m-3.30m Clay, brown 3.30m-27.40m Shale, brown 27.40m-79.20m Fractured Shale, blue	1472m	South
10123678	0.00m-0.30m Soil 0.30m-2.74m Clay Red 2.74m-3.66m Clay Red Shale 3.66m-12.80m Clay Shale Water Supply 12.80m-15.85m Basalt Water Supply 12.80m-15.85m Shale Seams	1498m	West
10029980	0.00m-0.60m Surface Soil 0.60m-4.50m Shale Yellow 4.50m-79.80m Shale	1538m	South
10115997	0.00m-0.60m SOIL 0.60m-1.20m RIDGE CLAY 1.20m-19.50m BROWN SHALE 19.50m-48.80m BLUE BASALT 48.80m-49.10m W.B. BASALT 49.10m-85.40m BLUE BASALT 85.40m-85.70m W.B. BASALT 85.70m-88.40m BLUE BASALT 88.40m-88.70m W.B. BASALT 88.70m-93.00m BLUE BASALT	1541m	South
10035967	0.00m-22.86m Shale 22.86m-46.02m Rock Water Supply	1549m	North East
10034375	0.00m-0.30m topsoil 0.30m-1.50m clay 1.50m-19.80m shale 19.80m-57.90m basalt 57.90m-58.20m water bearing basalt 58.20m-64.00m basalt 64.00m-64.30m water bearing basalt 64.30m-67.00m basalt	1553m	South
10101681	0.00m-0.60m Soil 0.60m-5.40m Clay Ridge 5.40m-12.80m Shale Yellow 12.80m-17.10m Shale 17.10m-17.40m Shale Water Bearing Water Supply 17.40m-18.90m Shale	1555m	South
10094727	0.00m-0.60m TOPSOIL 0.60m-2.40m shale 2.40m-14.60m shale 14.60m-24.30m shale 24.30m-24.60m water bearing brown shale 24.60m-76.10m basalt 76.10m-76.40m water bearing basalt 76.40m-79.20m basalt	1556m	West
10089538	0.00m-27.00m (1563m	South
10023929	0.00m-1.20m Soil 1.20m-2.20m Yellow Clay 2.20m-12.20m Yellow Shale 12.20m-27.40m Blue Basalt 27.40m-27.70m Water Bearing Basalt 27.70m-33.50m Basalt 33.50m-33.80m Water Bearing Basalt 33.80m-36.50m Basalt	1565m	South
10017271	0.00m-1.00m topsoil 1.00m-9.00m shale 9.00m-17.00m shale 17.00m-23.00m red clay	1580m	South
10107335	0.00m-0.60m Topsoil 0.60m-3.00m Shale Yellow 3.00m-9.00m Shale Hard 9.00m-25.70m Basalt Hard 25.70m-26.00m Basalt Water Bearing Water Supply 26.00m-33.50m Basalt Hard	1583m	West
10035253	0.00m-0.60m Topsoil 0.60m-8.00m Clay Sandy 8.00m-8.40m Clay Some Gravel Water Supply 8.40m-11.50m Shale Water Supply 11.50m-15.30m Basalt Black Water Supply	1594m	West
10002802	0.00m-1.00m Soil Surface 1.00m-6.00m Shale 6.00m-60.00m Shale Grey 60.00m-71.00m Basalt	1595m	North

NGIS Bore ID	Drillers Log	Distance	Direction
10084195	21.30m-24.00m basalt 24.00m-24.30m water bearing basalt 24.30m-34.30m basalt 34.30m-34.60m water bearing basalt 34.60m-44.00m basalt	1595m	South
10018191	0.00m-0.30m Topsoil 0.30m-6.30m Shale Yellow 6.30m-15.10m Shale Hard 15.10m-15.40m Shale Water Bearing 15.40m-21.20m Shale Hard 21.20m-48.70m Shale Water Supply	1613m	South
10114137	0.00m-0.91m Topsoil 0.91m-3.96m Clay Red 3.96m-10.36m Shale 10.36m-16.46m Slate 16.46m-21.34m Slate Some Large Fractured 21.34m-22.56m Basalt Black	1631m	South East
10003596	0.00m-3.05m Clay 3.05m-18.90m Shale Soak 18.90m-22.56m Shale Black Water Supply 22.56m-22.57m Basalt	1637m	North
10020748	0.00m-0.60m Topsoil 0.60m-4.50m Shale Yellow 4.50m-75.30m Shale 75.30m-79.80m Driller	1649m	South
10062425	0.00m-2.43m Soil 2.43m-5.48m Clay Stones 5.48m-10.97m Shale 10.97m-17.67m Slate Hard 17.67m-19.81m Shale Water Supply 19.81m-23.77m Shale 23.77m-25.60m Slate Grey Water Supply 25.60m-26.21m Basalt	1649m	West
10072151	0.00m-0.10m Topsoil 0.10m-3.50m Clay 3.50m-24.00m Shale Grey Water Supply 24.00m-25.00m Mudstone Grey 25.00m-40.80m Shale Water Supply	1651m	South
10099885	0.00m-1.00m Topsoil Red 1.00m-5.00m Clay Red 5.00m-15.00m Shale Grey 15.00m-16.00m Shale 16.00m-26.00m Shale Water Supply 26.00m-28.30m Basalt	1651m	South
10049766	0.00m-0.60m Soil Surface 0.60m-3.00m Shale Yellow 3.00m-9.00m Shale 9.00m-25.70m Basalt 25.70m-26.30m Basalt Water Supply 26.30m-30.40m Basalt	1654m	West
10057220	0.00m-0.60m Soil 0.60m-20.40m Shale Yellow 20.40m-20.70m Shale Water Bearing Water Supply 20.70m-21.30m Shale Yellow Water Supply 21.30m-21.60m Shale Water Bearing Water Supply 21.60m-24.30m Shale	1656m	South
10005157	0.00m-1.52m Soil 1.52m-5.48m Shale 5.48m-13.10m Shale Dark Brown 13.10m-24.38m Slate Water Supply 24.38m-25.90m Shale Dark Brown 25.90m-36.27m Basalt Water Supply	1668m	South East
10089213	0.00m-0.91m Topsoil 0.91m-4.57m Shale Broken 4.57m-30.48m Basalt	1670m	South
10038312	0.00m-2.00m clay 2.00m-19.00m Shale brown 19.00m-85.00m Basalt black 85.00m-90.00m Shale black 90.00m-95.00m Basalt grey	1673m	North
10054801	0.00m-0.30m Topsoil 0.30m-18.30m Shale, yellow 18.30m-91.40m Basalt, blue	1677m	South
10076127	0.00m-0.91m Soil Surface 0.91m-8.23m Clay Large Stones 8.23m-9.14m Gravel 9.14m-12.80m Boulders Large Water Supply 9.14m-12.80m Slate	1682m	West

NGIS Bore ID	Drillers Log	Distance	Direction
10004257	0.00m-0.91m Soil 0.91m-5.79m Clay 5.79m-12.50m Gravel Dry Dirty	1694m	West
10042305	0.00m-1.21m Soil 1.21m-3.04m Clay Stones 3.04m-14.63m Shale Hard 14.63m-25.60m Shale Water Supply 25.60m-28.95m Slate Grey Water Supply 28.95m-29.26m Basalt Water Supply	1703m	South West
10019310	0.00m-0.61m Topsoil Red 0.61m-1.52m Clay Stoney 1.52m-21.95m Shale Rock Water Supply 21.95m-22.25m Basalt Black	1736m	North East
10071674	0.00m-0.60m Soil Surface 0.60m-2.70m Clay Ridge 2.70m-16.70m Shale Yellow 16.70m-24.30m Shale Hard 24.30m-24.60m Shale Water Bearing Water Supply 24.60m-28.20m Shale Hard 28.20m-28.50m Shale Water Bearing Water Supply 28.50m-31.30m Shale Hard	1738m	South
10048142	0.00m-0.30m Topsoil 0.30m-15.30m Shale, brown 15.30m-45.80m Basalt 45.80m-46.40m Basalt, water bearing 46.40m-48.80m Basalt	1748m	South
10065409	0.00m-0.60m Soil 0.60m-4.90m Clay Yellow 4.90m-18.30m Shale Yellow 18.30m-18.60m Shale Water Bearing Water Supply 18.60m-19.80m Shale 19.80m-20.10m Shale Water Bearing Water Supply 20.10m-22.80m Shale	1753m	South
10011763	0.00m-0.91m Soil Surface 0.91m-4.57m Clay Red 4.57m-5.79m Mudstone 4.57m-5.79m Clay Seams 5.79m-9.14m Sand Yellow Bright 9.14m-10.36m Clay Mixed 10.36m-18.29m Shale 18.29m-22.25m Basalt Some Weathered Seams	1775m	West
10042728	0.00m-1.22m Topsoil 1.22m-5.49m Shale 5.49m-22.86m Shale	1778m	South
10085485	0.00m-0.91m Soil 0.91m-4.57m Clay Sandy 4.57m-9.44m Shale Water Supply 9.44m-14.63m Shale Water Supply 14.63m-24.99m Slate 24.99m-31.39m Basalt Water Supply	1781m	East
10046825	0.00m-1.50m soil 1.50m-10.60m ridge clay 10.60m-22.80m brown shale 22.80m-32.00m blue shale 32.00m-54.90m basalt	1803m	South East
10046907	0.00m-0.30m soil 0.30m-12.50m brown shale 12.50m-97.50m blue basalt	1810m	South East
10014807	0.00m-0.30m soil 0.30m-15.50m brown shale 15.50m-91.40m blue basalt	1826m	South East
10050960	0.00m-12.19m Slate Yellow Hard 12.19m-21.34m Slate Black Hard Water Bearing 21.34m-35.05m Slate Grey Water Supply	1836m	North East
10107171	0.00m-1.22m Topsoil 1.22m-10.67m Shale Broken 10.67m-14.63m Basalt	1840m	South West
10048794	0.00m-0.30m soil 0.30m-12.50m brown shale 12.50m-97.50m blue basalt	1843m	South East
10124452	0.00m-0.30m Soil 0.30m-0.91m Clay 0.91m-13.41m Shale Water Supply 13.41m-33.53m Shale Grey Water Supply	1848m	South East


NGIS Bore ID	Drillers Log	Distance	Direction
10103609	0.00m-0.30m soil 0.30m-1.50m red clay 1.50m-21.50m brown shale 21.50m-21.80m water bearing brown shale 21.80m-34.90m blue basalt 34.90m-35.20m water bearing blue basalt 35.20m-51.70m blue basalt 51.70m-52.00m water bearing blue basalt 52.00m-61.00m blue basalt	1850m	South East
10085893	0.00m-0.30m soil 0.30m-15.50m brown shale 15.50m-91.40m blue basalt	1851m	South East
10026425	0.00m-0.30m topsoil 0.30m-1.50m red clay 1.50m-21.50m shale 21.50m-21.80m water bearing brown shale 21.80m-34.90m basalt 34.90m-35.20m water bearing blue basalt 35.20m-51.70m basalt 51.70m-52.00m water bearing blue basalt 52.00m-61.00m basalt	1861m	South East
10061925	0.00m-1.50m soil 1.50m-10.60m ridge clay 10.60m-22.80m brown shale 22.80m-32.00m blue shale 32.00m-54.90m basalt	1864m	South East
10026821	0.00m-1.52m Soil 1.52m-3.66m Clay Gravel 3.66m-6.10m Shale Yellow 6.10m-21.34m Shale Water Supply 21.34m-22.86m Rock Basalt	1874m	West
10095444	0.00m-0.60m Soil 0.60m-2.70m Clay Ridge 2.70m-19.80m Shale Yellow 19.80m-20.10m Shale Water Bearing Water Supply 20.10m-21.30m Shale Yellow 21.30m-21.60m Shale Water Bearing Water Supply 21.60m-22.80m Shale Yellow 22.80m-23.10m Shale Water Bearing Water Supply 23.10m-24.30m Shale Yellow	1884m	South
10015883	0.00m-1.20m Topsoil 1.20m-19.40m Clay 19.40m-21.80m Gravel Water Supply 21.80m-38.20m Clay 38.20m-40.20m Gravel Water Supply	1913m	South
10086980	0.00m-19.51m Shale Water Supply	1930m	East
10136233	0.00m-0.61m Topsoil 0.61m-2.13m Clay 2.13m-9.14m Shale Yellow 9.14m-14.33m Rock Volcanic 14.33m-15.54m Rock Soft Seam Water Supply 15.54m-17.68m Rock Volcanic 17.68m-18.59m Rock Soft Seam 18.59m-25.91m Rock Volcanic	1941m	East
10014214	0.00m-0.60m Soil 0.60m-1.20m Yellow Shale 1.20m-15.80m Brown Shale 15.80m-18.20m Blue Shale 18.20m-18.50m W.b Basalt 18.50m-25.80m Basalt 25.80m-26.10m W.b Basalt 26.10m-36.50m Basalt	1945m	South
10109301	0.00m-0.60m Soil Surface 0.60m-10.70m Shale Hard 10.70m-12.20m Shale Water Supply 12.20m-13.70m Shale Hard 13.70m-15.20m Shale Water Supply	1950m	North
10002119	0.00m-1.00m Soil Red Surface 1.00m-10.00m Shale 10.00m-26.00m Shale Water Supply 26.00m-27.00m Shale Grey	1955m	South
10041513	0.00m-1.22m Soil 1.22m-4.88m Clay 4.88m-17.68m Shale Water Supply	1960m	West

NGIS Bore ID	Drillers Log	Distance	Direction
10034109	0.00m-1.22m Soil Red 1.22m-3.05m Clay Gravel 3.05m-7.01m Shale Water Supply 7.01m-11.58m Sandstone Water Supply 11.58m-12.80m Shale Seams 12.80m-13.72m Sandstone Water Supply 13.72m-15.85m Shale Water Supply 15.85m-23.16m Sandstone Water Supply 23.16m-24.38m Rock Basalt Hard	1984m	West
10035618	0.00m-1.52m Soil 1.52m-2.74m Basalt 2.74m-8.23m Shale Hard 8.23m-14.63m Slate 14.63m-17.37m Basalt Black 17.37m-24.38m Shale Hard Broken 24.38m-24.99m Basalt Black 24.99m-25.60m Shale Hard 25.60m-32.00m Basalt Black 32.00m-34.14m Shale Broken Water Supply 34.14m-48.77m Slate 48.77m-51.51m Slate Water Supply 48.77m-51.51m Shale Seams 51.51m-53.04m Basalt Black Very Hard	1984m	South East
10108464	0.00m-0.91m Clay Sandy 0.91m-12.19m Clay Broken Rock 12.19m-57.91m Shale Hard Water Supply Quartz Limestone	1989m	South
10113935	0.00m-0.60m Soil 0.60m-7.90m Ridge Clay 7.90m-12.20m Shale Brown 12.20m-12.50m Shale w.b brown 12.50m-17.10m Shale brown 17.10m-18.30m Shale w.b brown 18.30m-19.50m Basalt	1997m	West

Drill Log Data Source: Bureau of Meteorology; Water NSW. Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Geology Burgmanns Lane Warral, Tamworth, NSW 2340

Geology

Burgmanns Lane Warral, Tamworth, NSW 2340

Geological Units

What are the Geological Units within the dataset buffer?

Unit Code	Unit Name	Description	Unit Stratigraphy	Age	Dominant Lithology	Distance
Cpam	Mandowa Mudstone	Grey, thin-bedded, laminated and massive mudstone with subordinate, thin siltstone and fine sandstone.	/Parry Group//Mandowa Mudstone//	Famennian (base) to Famennian (top)	Mudstone	0m
Cpak	Keepit Conglomerate	Boulder to pebble conglomerate, mudstone and thinly bedded sandstone.	/Parry Group//Keepit Conglomerate//	Famennian (base) to Famennian (top)	Conglomerate	495m
Сраа	Noumea beds	Interbedded massive- and andesitic-lithic wacke, pebbly wacke, laminated siltstone and mudstone.	/Parry Group//Noumea beds//	Frasnian (base) to Famennian (top)	Sandstone	705m

Linear Geological Structures

What are the Dyke, Sill, Fracture, Lineament and Vein trendlines within the dataset buffer?

Map ID	Feature Description	Map Sheet Name	Distance
No Features			

What are the Faults, Shear zones or Schist zones, Intrusive boundaries & Marker beds within the dataset buffer?

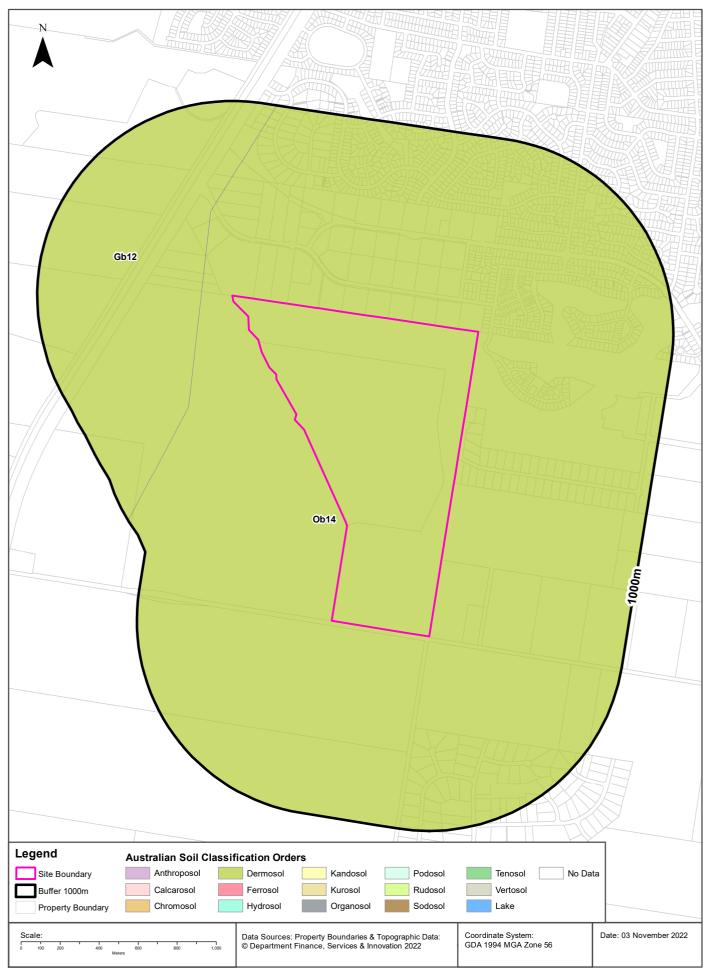
Map ID	Boundary Type	Description	Map Sheet Name	Distance
No Features				

Geological Data Source: Statewide Seamless Geology v2.1, Department of Regional NSW Creative Commons 4.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/4.0/au/deed.en

Naturally Occurring Asbestos Potential

Burgmanns Lane Warral, Tamworth, NSW 2340

Naturally Occurring Asbestos Potential


Naturally Occurring Asbestos Potential within the dataset buffer:

Potential	Sym	Strat Name	Group	Formation	Scale	Min Age	Max Age	Rock Type	Dom Lith	Description	Dist	Dir
No records in buffer												

Naturally Occurring Asbestos Potential Data Source: © State of New South Wales through NSW Department of Industry, Resources & Energy

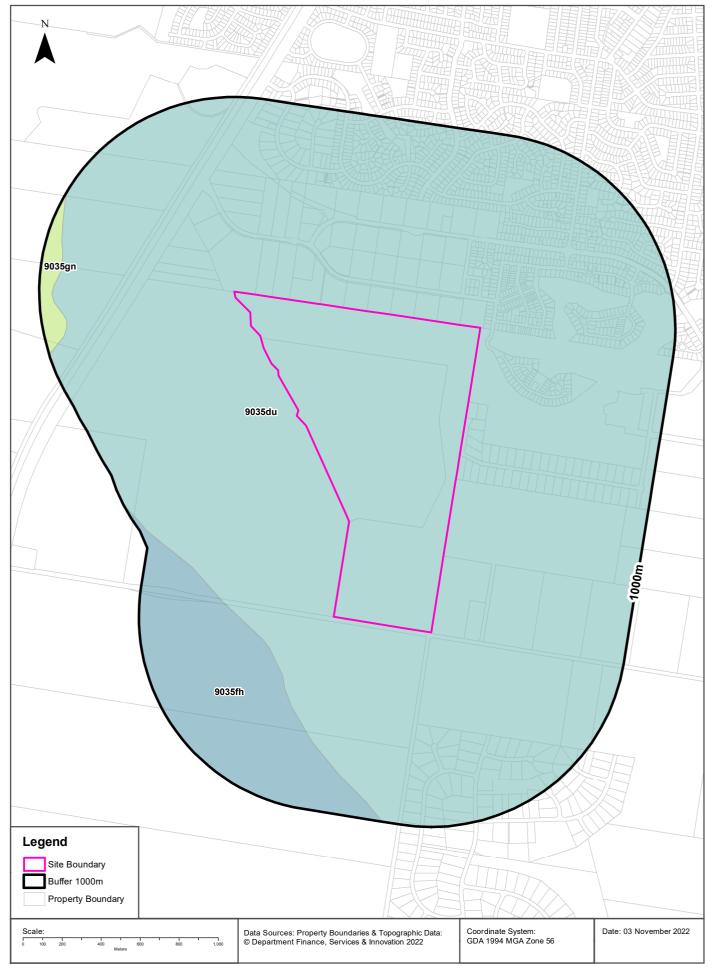
Atlas of Australian Soils

Soils

Burgmanns Lane Warral, Tamworth, NSW 2340

Atlas of Australian Soils

Soil mapping units and Australian Soil Classification orders within the dataset buffer:


Map Unit Code	Soil Order	Map Unit Description	Distance	Direction
Ob14	Dermosol	Almost flat to strongly undulating terrain with long gentle slopes sometimes broken by ridges: chief soils are hard alkaline red soils (Dr2.23). Associated are relatively small occurrences of many soils, including: dark cracking clays, such as (Ug5. 13 and Ug5. 15), usually on slopes and in valleys; (Dr2.22) and shallow loams such as (Um4.1), usually on ridges; (Dy2.43) and (Dy3.43) soils, usually in flat areas and valleys. As mapped, small areas of units Gb12, Qb19, and Ra4 are included. Erosion has exposed subsoils in many places.	Om	On-site
Gb12	Dermosol	River flood-plains, terraces, and levees: chief soils are probably dark porous loamy soils (Um6.11 and Um6.12) with other (Um) and (Uc) soils. Associated are, locally, fairly large areas of dark cracking clays such as (Ug5.16); areas of (Dy3.4) soils; and sometimes areas of gravelly (Gn2) soils. Soils data are limited.	160m	North West

Atlas of Australian Soils Data Source: CSIRO

Creative Commons 4.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/4.0/au/deed.en

Soil Landscapes of Central and Eastern NSW

Soils

Burgmanns Lane Warral, Tamworth, NSW 2340

Soil Landscapes of Central and Eastern NSW

Soil Landscapes of Central and Eastern NSW within the dataset buffer:

Soil Code	Name	Distance	Direction
<u>9035du</u>	Duri	0m	On-site
<u>9035fh</u>	Fullwoods Hill	369m	South West
<u>9035gn</u>	Goonoo Goonoo	874m	North West

Soil Landscapes of Central and Eastern NSW: NSW Department of Planning, Industry and Environment

Creative Commons 4.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/4.0/au/deed.en

Acid Sulfate Soils

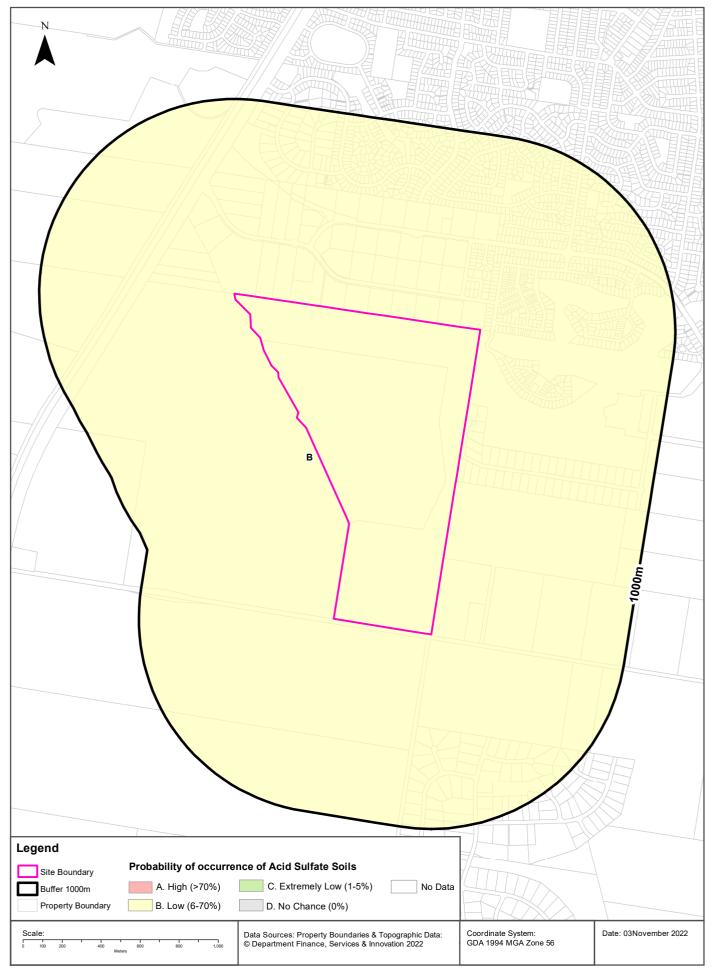
Burgmanns Lane Warral, Tamworth, NSW 2340

Environmental Planning Instrument - Acid Sulfate Soils

What is the on-site Acid Sulfate Soil Plan Class that presents the largest environmental risk?

Soil Class	Description	EPI Name
N/A		

If the on-site Soil Class is 5, what other soil classes exist within 500m?


Soil Class	Description	EPI Name	Distance	Direction
N/A				

NSW Crown Copyright - Planning and Environment

Creative Commons 4.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/4.0/

Atlas of Australian Acid Sulfate Soils

Acid Sulfate Soils

Burgmanns Lane Warral, Tamworth, NSW 2340

Atlas of Australian Acid Sulfate Soils

Atlas of Australian Acid Sulfate Soil categories within the dataset buffer:

Class	Description	Distance	Direction
В	Low Probability of occurrence. 6-70% chance of occurrence.	0m	On-site

Atlas of Australian Acid Sulfate Soils Data Source: CSIRO

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Dryland Salinity

Burgmanns Lane Warral, Tamworth, NSW 2340

Dryland Salinity - National Assessment

Is there Dryland Salinity - National Assessment data onsite?

No

Is there Dryland Salinity - National Assessment data within the dataset buffer?

No

What Dryland Salinity assessments are given?

Assessment 2000	Assessment 2020	Assessment 2050	Distance	Direction
N/A	N/A	N/A		

Dryland Salinity Data Source : National Land and Water Resources Audit

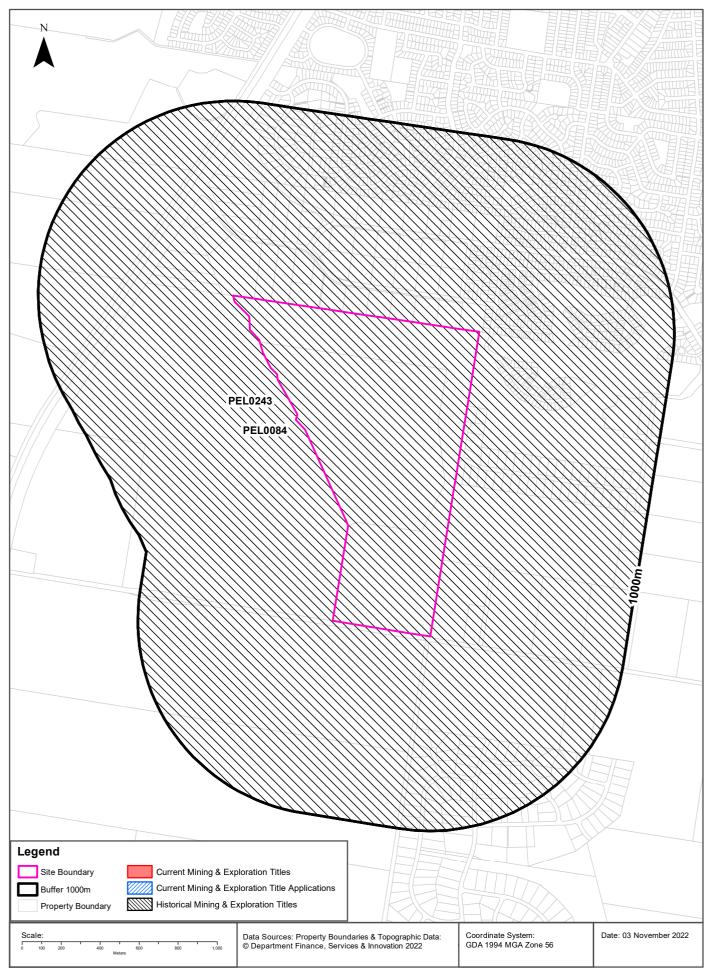
The Commonwealth and all suppliers of source data used to derive the maps of "Australia, Forecast Areas Containing Land of High Hazard or Risk of Dryland Salinity from 2000 to 2050" do not warrant the accuracy or completeness of information in this product. Any person using or relying upon such information does so on the basis that the Commonwealth and data suppliers shall bear no responsibility or liability whatsoever for any errors, faults, defects or omissions in the information. Any persons using this information do so at their own risk.

In many cases where a high risk is indicated, less than 100% of the area will have a high hazard or risk.

Mining

Burgmanns Lane Warral, Tamworth, NSW 2340

Mining Subsidence Districts


Mining Subsidence Districts within the dataset buffer:

District	Distance	Direction
There are no Mining Subsidence Districts within the report buffer		

Mining Subsidence District Data Source: © Land and Property Information (2016) Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Mining & Exploration Titles

Mining

Burgmanns Lane Warral, Tamworth, NSW 2340

Current Mining & Exploration Titles

Current Mining & Exploration Titles within the dataset buffer:

Title Ref	Holder	Grant Date	Expiry Date	Last Renewed	Operation	Resource	Minerals	Dist	Dir
N/A	No records in buffer								

Current Mining & Exploration Titles Data Source: © State of New South Wales through NSW Department of Industry

Current Mining & Exploration Title Applications

Current Mining & Exploration Title Applications within the dataset buffer:

Application Ref	Applicant	Application Date	Operation	Resource	Minerals	Dist	Dir
N/A	No records in buffer						

Current Mining & Exploration Title Applications Data Source: © State of New South Wales through NSW Department of Industry

Mining

Burgmanns Lane Warral, Tamworth, NSW 2340

Historical Mining & Exploration Titles

Historical Mining & Exploration Titles within the dataset buffer:

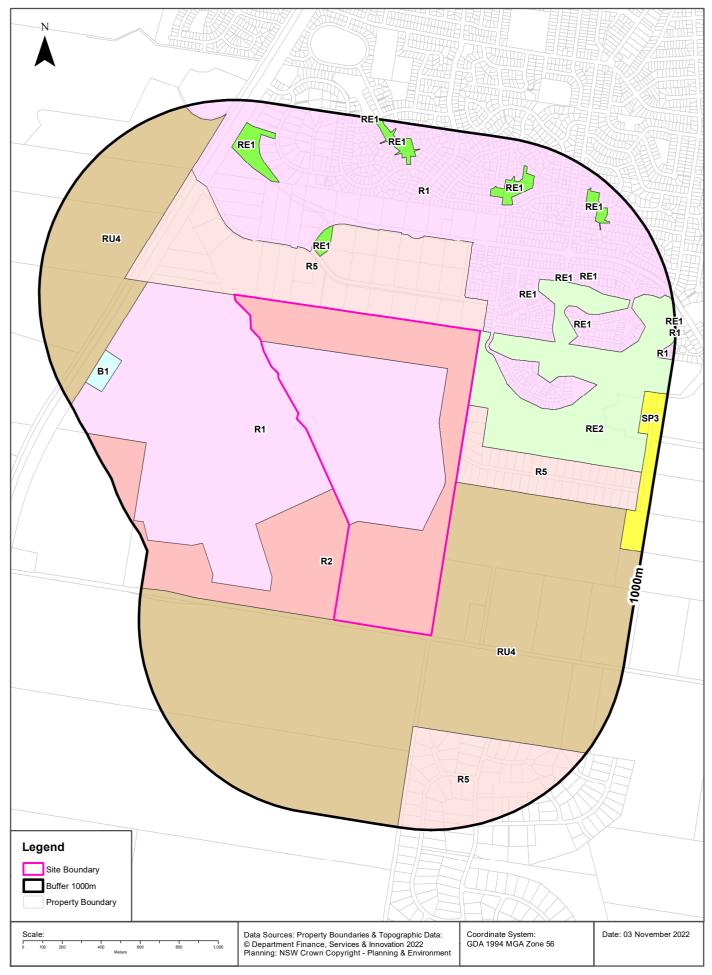
Title Ref	Holder	Start Date	End Date	Resource	Minerals	Dist	Dir
PEL0243	PETROSEARCH PTY LTD, SION RESOURCES AUSTRALIA LTD	19810110	19841210	PETROLEUM	Petroleum	0m	On-site
PEL0084				PETROLEUM	Petroleum	0m	On-site

Historical Mining & Exploration Titles Data Source: © State of New South Wales through NSW Department of Industry

State Environmental Planning Policy

Burgmanns Lane Warral, Tamworth, NSW 2340

State Significant Precincts


What SEPP State Significant Precincts exist within the dataset buffer?

Map Id	Precinct	EPI Name	Published Date	Commenced Date	Currency Date	Amendment	Distance	Direction
N/A	No records in buffer							

State Environment Planning Policy Data Source: NSW Crown Copyright - Planning & Environment Creative Commons 4.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/4.0/

EPI Planning Zones

Environmental Planning Instrument

Burgmanns Lane Warral, Tamworth, NSW 2340

Land Zoning

What EPI Land Zones exist within the dataset buffer?

Zone	Description	Purpose	EPI Name	Published Date	Commenced Date	Currency Date	Amendment	Distance	Direction
R2	Low Density Residential		Tamworth Regional Local Environmental Plan 2010	27/10/2017	27/10/2017	06/11/2020	Amendment No 12	0m	On-site
R1	General Residential		Tamworth Regional Local Environmental Plan 2010	27/10/2017	27/10/2017	06/11/2020	Amendment No 12	0m	On-site
RE2	Private Recreation		Tamworth Regional Local Environmental Plan 2010	06/11/2020	06/11/2020	06/11/2020	Amendment No 20	0m	East
R5	Large Lot Residential		Tamworth Regional Local Environmental Plan 2010	15/02/2013	15/02/2013	06/11/2020	Amendment No 2	0m	East
RU4	Primary Production Small Lots		Tamworth Regional Local Environmental Plan 2010	13/09/2019	13/09/2019	06/11/2020	Amendment No 16	0m	South
R5	Large Lot Residential		Tamworth Regional Local Environmental Plan 2010	21/01/2011	21/01/2011	06/11/2020		0m	North
R1	General Residential		Tamworth Regional Local Environmental Plan 2010	21/01/2011	21/01/2011	06/11/2020		12m	North
RE1	Public Recreation		Tamworth Regional Local Environmental Plan 2010	21/01/2011	21/01/2011	06/11/2020		257m	North
RE1	Public Recreation		Tamworth Regional Local Environmental Plan 2010	21/01/2011	21/01/2011	06/11/2020		280m	North East
R5	Large Lot Residential		Tamworth Regional Local Environmental Plan 2010	21/01/2011	21/01/2011	06/11/2020		475m	South
RE1	Public Recreation		Tamworth Regional Local Environmental Plan 2010	21/01/2011	21/01/2011	06/11/2020		492m	North East
RE1	Public Recreation		Tamworth Regional Local Environmental Plan 2010	21/01/2011	21/01/2011	06/11/2020		509m	North East
RE1	Public Recreation		Tamworth Regional Local Environmental Plan 2010	21/01/2011	21/01/2011	06/11/2020		603m	North West
RE1	Public Recreation		Tamworth Regional Local Environmental Plan 2010	21/01/2011	21/01/2011	06/11/2020		608m	North East
RE1	Public Recreation		Tamworth Regional Local Environmental Plan 2010	21/01/2011	21/01/2011	06/11/2020		658m	North East
B1	Neighbourhood Centre		Tamworth Regional Local Environmental Plan 2010	27/10/2017	27/10/2017	06/11/2020	Amendment No 12	661m	West
RE1	Public Recreation		Tamworth Regional Local Environmental Plan 2010	21/01/2011	21/01/2011	06/11/2020		789m	North
RE1	Public Recreation		Tamworth Regional Local Environmental Plan 2010	21/01/2011	21/01/2011	06/11/2020		804m	North East
SP3	Tourist		Tamworth Regional Local Environmental Plan 2010	06/11/2020	06/11/2020	06/11/2020	Amendment No 20	880m	East
RE1	Public Recreation		Tamworth Regional Local Environmental Plan 2010	21/01/2011	21/01/2011	06/11/2020		986m	East
RE1	Public Recreation		Tamworth Regional Local Environmental Plan 2010	21/01/2011	21/01/2011	06/11/2020		987m	North

Environmental Planning Instrument Data Source: NSW Crown Copyright - Planning & Environment

Creative Commons 4.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/4.0/

Heritage

Burgmanns Lane Warral, Tamworth, NSW 2340

Commonwealth Heritage List

What are the Commonwealth Heritage List Items located within the dataset buffer?

Place Id	Name	Address	Place File No	Class	Status	Register Date	Distance	Direction
N/A	No records in buffer							

Heritage Data Source: Australian Government Department of the Environment and Energy - Heritage Branch Creative Commons 3.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/3.0/au/deed.en

National Heritage List

What are the National Heritage List Items located within the dataset buffer? Note. Please click on Place Id to activate a hyperlink to online website.

Place Id	Name	Address	Place File No	Class	Status	Register Date	Distance	Direction
N/A	No records in buffer							

Heritage Data Source: Australian Government Department of the Environment and Energy - Heritage Branch Creative Commons 3.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/3.0/au/deed.en

State Heritage Register - Curtilages

What are the State Heritage Register Items located within the dataset buffer?

Map Id	Name	Address	LGA	Listing Date	Listing No	Plan No	Distance	Direction
N/A	No records in buffer							

Heritage Data Source: NSW Crown Copyright - Office of Environment & Heritage Creative Commons 4.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/4.0/

Environmental Planning Instrument - Heritage

What are the EPI Heritage Items located within the dataset buffer?


Map Id	Name	Classification	Significance	EPI Name	Published Date	Commenced Date	Currency Date	Distance	Direction
N/A	No records in buffer								

Heritage Data Source: NSW Crown Copyright - Planning & Environment

Creative Commons 4.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/4.0/

Natural Hazards - Bush Fire Prone Land

Natural Hazards

Burgmanns Lane Warral, Tamworth, NSW 2340

Bush Fire Prone Land

What are the nearest Bush Fire Prone Land Categories that exist within the dataset buffer?

Bush Fire Prone Land Category	Distance	Direction
Vegetation Category 3	0m	On-site
Vegetation Buffer	Om	On-site

NSW Bush Fire Prone Land - © NSW Rural Fire Service under Creative Commons 4.0 International Licence

Burgmanns Lane Warral, Tamworth, NSW 2340

Ramsar Wetlands

What Ramsar Wetland areas exist within the dataset buffer?

Map Id	Ramsar Name	Wetland Name	Designation Date	Source	Distance	Direction
N/A	No records in buffer					

Ramsar Wetlands Data Source: © Commonwealth of Australia - Department of Agriculture, Water and the Environment

Burgmanns Lane Warral, Tamworth, NSW 2340

Groundwater Dependent Ecosystems Atlas

Туре	GDE Potential	Geomorphology	Ecosystem Type	Aquifer Geology	Distance	Direction
N/A	No records in buffer					

Groundwater Dependent Ecosystems Atlas Data Source: The Bureau of Meteorology Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Burgmanns Lane Warral, Tamworth, NSW 2340

Inflow Dependent Ecosystems Likelihood

Туре	IDE Likelihood	Geomorphology	Ecosystem Type	Aquifer Geology	Distance	Direction
N/A	No records in buffer					

Inflow Dependent Ecosystems Likelihood Data Source: The Bureau of Meteorology Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Burgmanns Lane Warral, Tamworth, NSW 2340

NSW BioNet Atlas

Species on the NSW BioNet Atlas that have a NSW or federal conservation status, a NSW sensitivity status, or are listed under a migratory species agreement, and are within 10km of the site?

Kingdom	Class	Scientific	Common	NSW Conservation Status	NSW Sensitivity Class	Federal Conservation Status	Migratory Species Agreements
Animalia	Amphibia	Litoria booroolongensis	Booroolong Frog	Endangered	Not Sensitive	Endangered	
Animalia	Aves	Alectura lathami	Australian Brush- turkey	Endangered Population	Not Sensitive	Not Listed	
Animalia	Aves	Apus pacificus	Fork-tailed Swift	Not Listed	Not Sensitive	Not Listed	Rokamba;camba; Jamba
Animalia	Aves	Artamus cyanopterus cyanopterus	Dusky Woodswallow	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Calyptorhynchus banksii samueli	Red-tailed Black- Cockatoo (inland subspecies)	Vulnerable	Category 2	Not Listed	
Animalia	Aves	Chthonicola sagittata	Speckled Warbler	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Circus assimilis	Spotted Harrier	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Climacteris picumnus victoriae	Brown Treecreeper (eastern subspecies)	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Falco subniger	Black Falcon	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Gallinago hardwickii	Latham's Snipe	Not Listed	Not Sensitive	Not Listed	ROKAMBA;JAMBA
Animalia	Aves	Glossopsitta porphyrocephala	Purple-crowned Lorikeet	Vulnerable	Category 3	Not Listed	
Animalia	Aves	Glossopsitta pusilla	Little Lorikeet	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Hieraaetus morphnoides	Little Eagle	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Hirundapus caudacutus	White-throated Needletail	Not Listed	Not Sensitive	Vulnerable	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Lathamus discolor	Swift Parrot	Endangered	Category 3	Critically Endangered	
Animalia	Aves	Lophoictinia isura	Square-tailed Kite	Vulnerable	Category 3	Not Listed	
Animalia	Aves	Melithreptus gularis gularis	Black-chinned Honeyeater (eastern subspecies)	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Neophema pulchella	Turquoise Parrot	Vulnerable	Category 3	Not Listed	
Animalia	Aves	Ninox strenua	Powerful Owl	Vulnerable	Category 3	Not Listed	
Animalia	Aves	Pachycephala inornata	Gilbert's Whistler	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Petroica boodang	Scarlet Robin	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Pezoporus wallicus	Eastern Ground Parrot	Vulnerable	Category 3	Not Listed	
Animalia	Aves	Polytelis swainsonii	Superb Parrot	Vulnerable	Category 3	Vulnerable	
Animalia	Aves	Stagonopleura guttata	Diamond Firetail	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Thinornis cucullatus cucullatus	Eastern Hooded Dotterel	Critically Endangered	Not Sensitive	Vulnerable	

Kingdom	Class	Scientific	Common	NSW Conservation Status	NSW Sensitivity Class	Federal Conservation Status	Migratory Species Agreements
Animalia	Mammalia	Chalinolobus dwyeri	Large-eared Pied Bat	Vulnerable	Not Sensitive	Vulnerable	
Animalia	Mammalia	Dasyurus maculatus	Spotted-tailed Quoll	Vulnerable	Not Sensitive	Endangered	
Animalia	Mammalia	Falsistrellus tasmaniensis	Eastern False Pipistrelle	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Micronomus norfolkensis	Eastern Coastal Free-tailed Bat	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Miniopterus orianae oceanensis	Large Bent- winged Bat	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Petaurus norfolcensis	Squirrel Glider	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Phascolarctos cinereus	Koala	Endangered	Not Sensitive	Endangered	
Animalia	Mammalia	Pteropus poliocephalus	Grey-headed Flying-fox	Vulnerable	Not Sensitive	Vulnerable	
Animalia	Reptilia	Aprasia parapulchella	Pink-tailed Legless Lizard	Vulnerable	Not Sensitive	Vulnerable	
Animalia	Reptilia	Chelonia mydas	Green Turtle	Vulnerable	Not Sensitive	Vulnerable	
Animalia	Reptilia	Simoselaps fasciolatus	Narrow-banded Snake	Vulnerable	Not Sensitive	Not Listed	
Animalia	Reptilia	Suta flagellum	Little Whip Snake	Vulnerable	Not Sensitive	Not Listed	
Animalia	Reptilia	Uvidicolus sphyrurus	Border Thick- tailed Gecko	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Dichanthium setosum	Bluegrass	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Eucalyptus nicholii	Narrow-leaved Black Peppermint	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Euphrasia ruptura		Extinct	Not Sensitive	Extinct	
Plantae	Flora	Syzygium paniculatum	Magenta Lilly Pilly	Endangered	Not Sensitive	Vulnerable	

Data does not include NSW category 1 sensitive species.

NSW BioNet: © State of NSW and Office of Environment and Heritage

Location Confidences

Where Lotsearch has had to georeference features from supplied addresses, a location confidence has been assigned to the data record. This indicates a confidence to the positional accuracy of the feature. Where applicable, a code is given under the field heading "LC" or "LocConf". These codes lookup to the following location confidences:

LC Code	Location Confidence
Premise Match	Georeferenced to the site location / premise or part of site
Area Match	Georeferenced to an approximate or general area
Road Match	Georeferenced to a road or rail corridor
Road Intersection	Georeferenced to a road intersection
Buffered Point	A point feature buffered to x metres
Adjacent Match	Land adjacent to a georeferenced feature
Network of Features	Georeferenced to a network of features
Suburb Match	Georeferenced to a suburb boundary
As Supplied	Spatial data supplied by provider

USE OF REPORT - APPLICABLE TERMS

The following terms apply to any person (End User) who is given the Report by the person who purchased the Report from Lotsearch Pty Ltd (ABN: 89 600 168 018) (Lotsearch) or who otherwise has access to the Report (Terms). The contract terms that apply between Lotsearch and the purchaser of the Report are specified in the order form pursuant to which the Report was ordered and the terms set out below are of no effect as between Lotsearch and the purchaser of the Report.

- 1. End User acknowledges and agrees that:
 - (a) the Report is compiled from or using content (Third Party Content) which is comprised of:
 - content provided to Lotsearch by third party content suppliers with whom Lotsearch has contractual arrangements or content which is freely available or methodologies licensed to Lotsearch by third parties with whom Lotsearch has contractual arrangements (Third Party Content Suppliers); and
 - (ii) content which is derived from content described in paragraph (i);
 - (b) Neither Lotsearch nor Third Party Content Suppliers takes any responsibility for or give any warranty in relation to the accuracy or completeness of any Third Party Content included in the Report including any contaminated land assessment or other assessment included as part of a Report;
 - (c) the Third Party Content Suppliers do not constitute an exhaustive set of all repositories or sources of information available in relation to the property which is the subject of the Report (**Property**) and accordingly neither Lotsearch nor Third Party Content Suppliers gives any warranty in relation to the accuracy or completeness of the Third Party Content incorporated into the report including any contaminated land assessment or other assessment included as part of a Report;
 - (d) Reports are generated at a point in time (as specified by the date/time stamp appearing on the Report) and accordingly the Report is based on the information available at that point in time and Lotsearch is not obliged to undertake any additional reporting to take into consideration any information that may become available between the point in time specified by the date/time stamp and the date on which the Report was provided by Lotsearch to the purchaser of the Report;
 - (e) Reports must be used or reproduced in their entirety and End User must not reproduce or make available to other persons only parts of the Report;
 - (f) Lotsearch has not undertaken any physical inspection of the property;
 - (g) neither Lotsearch nor Third Party Content Suppliers warrants that all land uses or features whether past or current are identified in the Report;
 - (h) the Report does not include any information relating to the actual state or condition of the Property;
 - (i) the Report should not be used or taken to indicate or exclude actual fitness or unfitness of Land or Property for any particular purpose
 - (j) the Report should not be relied upon for determining saleability or value or making any other decisions in relation to the Property and in particular should not be taken to be a rating or assessment of the desirability or market value of the property or its features; and
 - (k) the End User should undertake its own inspections of the Land or Property to satisfy itself that there are no defects or failures
- 2. The End User may not make the Report or any copies or extracts of the report or any part of it available to any other person. If End User wishes to provide the Report to any other person or make extracts or copies of the Report, it must contact the purchaser of the Report before doing so to ensure the proposed use is consistent with the contract terms between Lotsearch and the purchaser.
- 3. Neither Lotsearch (nor any of its officers, employees or agents) nor any of its Third Party Content Suppliers will have any liability to End User or any person to whom End User provides the Report and End User must not represent that Lotsearch or any of its Third Party Content Suppliers accepts liability to any such person or make any other representation to any such person on behalf of Lotsearch or any Third Party Content Supplier.
- 4. The End User hereby to the maximum extent permitted by law:
 - (a) acknowledges that the Lotsearch (nor any of its officers, employees or agents), nor any of its Third Party Content Supplier have any liability to it under or in connection with the

Report or these Terms;

- (b) waives any right it may have to claim against Third Party Content Supplier in connection with the Report, or the negotiation of, entry into, performance of, or termination of these Terms; and
- (c) releases each Third Party Content Supplier from any claim it may have otherwise had in connection with the Report, or the negotiation of, entry into, performance of, or termination of these Terms.
- 5. The End User acknowledges that any Third Party Supplier shall be entitled to plead the benefits conferred on it under clause 4, despite not being a party to these terms.
- 6. End User must not remove any copyright notices, trade marks, digital rights management information, other embedded information, disclaimers or limitations from the Report or authorise any person to do so.
- 7. End User acknowledges and agrees that Lotsearch and Third Party Content Suppliers retain ownership of all copyright, patent, design right (registered or unregistered), trade marks (registered or unregistered), database right or other data right, moral right or know how or any other intellectual property right in any Report or any other item, information or data included in or provided as part of a Report.
- 8. To the extent permitted by law and subject to paragraph 9, all implied terms, representations and warranties whether statutory or otherwise relating to the subject matter of these Terms other than as expressly set out in these Terms are excluded.
- 9. Subject to paragraph 6, Lotsearch excludes liability to End User for loss or damage of any kind, however caused, due to Lotsearch's negligence, breach of contract, breach of any law, in equity, under indemnities or otherwise, arising out of all acts, omissions and events whenever occurring.
- 10. Lotsearch acknowledges that if, under applicable State, Territory or Commonwealth law, End User is a consumer certain rights may be conferred on End User which cannot be excluded, restricted or modified. If so, and if that law applies to Lotsearch, then, Lotsearch's liability is limited to the greater of an amount equal to the cost of resupplying the Report and the maximum extent permitted under applicable laws.
- 11. Subject to paragraph 9, neither Lotsearch nor the End User is liable to the other for:
 - (a) any indirect, incidental, consequential, special or exemplary damages arising out of or in relation to the Report or these Terms; or
 - (b) any loss of profit, loss of revenue, loss of interest, loss of data, loss of goodwill or loss of business opportunities, business interruption arising directly or indirectly out of or in relation to the Report or these Terms,

irrespective of how that liability arises including in contract or tort, liability under indemnity or for any other common law, equitable or statutory cause of action or otherwise.

12. These Terms are subject to New South Wales law.

 😂 admin@mossenviro.com

🔄 www.mossenviro.com

♠ PO Box 390, Tamworth NSW 2340

APPENDIX B – BYDA searches

06/11/2022

To: Elizabeth Ogunsote Not Supplied 24, Fitzroy Street Tamworth, 2340

> Sequence No: 217880833 Job No: 33051649 Location: 43 Rodeo Drive Hillvue, NSW, 2340 Commencement Date: 01/12/2022

Dial Before You Dig Response – Underground Fibre Assets

Dear Elizabeth Ogunsote

This letter is in relation to the proposed work at location detailed above is in the vicinity and may impact AARNet fibre optic cable assets.

Attached is a map indicating the approximate location of the AARNet assets in relation to your enquiry area. A detailed Plan is normally attached to this response. There may be additional AARNet assets in this area contained within Telstra duct. No work is to take place until plans have been obtained from Telstra and reviewed as necessary

Any information provided is valid for 28 days from the date of issue of this document.

Please review the map and if you have any further concerns, contact the AARNet NOC on 1300 APL NOC (1300 275 662).

If you are proposing to carry out digging in the vicinity of AARNet underground infrastructure you will need to carry out these works in accordance with the guidelines below.

WARNING

Where AARNet plans have been attached, they are indicative of the position of AARNet Pty Ltd's (AARNet) fibre optic installation/s only. Services belonging to other third parties are not included on these plans.

These plans have been prepared solely for the use of AARNet and any reliance placed on these plans by you is entirely at your own risk. The plans may show the position of our assets relative to fences, buildings etc., as they existed at the time the fibre etc. was installed. The plans may not have been updated to take account of any subsequent change in the location or style of those features since the time at which the plans were initially prepared.

The Essential First Step.

While reasonable measures have been taken to ensure the accuracy of the information contained in this plan response, neither AARNet or PelicanCorp shall have any liability whatsoever in relation to any loss, damage, cost or expense arising from the use of this plan response or the information contained in it or the completeness or accuracy of such information. Use of such information is subject to and constitutes acceptance of these terms.

General Enquires 1300 APL NOC (1300 275 662)

To resubmit or change the nominated search area contact DBYD via Phone 1100 or <u>www.1100.com.au</u>

AARNet makes no warranty as to the accuracy or completeness of the enclosed plans and does not assume any duty of care to you nor any responsibility for the accuracy, adequacy, suitability or completeness of the plans or for any error, omission, lack of detail, transmission failure or corruption in the information provided. AARNet does not accept any responsibility for any loss that you or anyone else may suffer in connection with the provision of these plans, however that loss may arise (including whether or not arising from the negligence of AARNet, its employees, agents, officers or contractors).

The recipient of these plans must use their own care and diligence in carrying out their works and must carry out further surveys to locate services at their work site. Persons excavating or carrying out other earthworks will be held responsible for any damage caused to AARNet's fibre optic installations.

While reasonable measures have been taken to ensure the accuracy of the information contained in this plan response, neither AARNet or PelicanCorp shall have any liability whatsoever in relation to any loss, damage, cost or expense arising from the use of this plan response or the information contained in it or the completeness or accuracy of such information. Use of such information is subject to and constitutes acceptance of these terms.

All Areas

Under no circumstances shall construction, digging or excavating work entailing crossing AARNet plant be carried out without first exposing or locating the AARNet asset by an accredited locator and under the supervision of an accredited plant location contractor.

Manual pot-holing needs to be undertaken with extreme care, common-sense and employing techniques least likely to damage cables. For example, orientate shovel blades and trowels parallel to the cable rather than digging across the cable.

Visual location of asset must be carried out by hand digging or using non-destructive water jet method (pot holing) where construction activities may damage or interfere with AARNet assets.

The following minimum clearances must be maintained between mechanical construction activity and the located AARNet asset.

Jackhammers / Pneumatic Breakers	Not within 1.0m of actual location			
Vibrating Plate or Wacker Packer Compactor	Not within 0.5m of actual location 300mm compact clearance before compactor can be used over AARNet conduits. 750mm compact clearance cover before compactor can be used Over AARNet Direct Buried cable			
Boring Equipment (in-line, horizontal and vertical)	Not within 5.0m of actual location without supervision of accredited plant location contractor onsite OR AARNet asset must exposed via hand dig or nondestructive water jet method (pot holing). AND AARNet asset must not be crossed without first exposing the asset at the crossing point and not without an accredited plant location contractor representative onsite			

While reasonable measures have been taken to ensure the accuracy of the information contained in this plan response, neither AARNet or PelicanCorp shall have any liability whatsoever in relation to any loss, damage, cost or expense arising from the use of this plan response or the information contained in it or the completeness or accuracy of such information. Use of such information is subject to and constitutes acceptance of these terms.

General Enquires 1300 APL NOC (1300 275 662)

To resubmit or change the nominated search area contact DBYD via Phone 1100 or <u>www.1100.com.au</u>

Heavy vehicle Traffic (over 3 tonnes)	Not to be driven over AARNet conduits or assets with less than 600mm of cover. Depth to be verified via hand digging			
Mechanical Excavators, Farm ploughing, Boring, Tree removal, fencing	Not within 1.0m of actual location. Constructor to hand dig or use non-destructive water jet method (pot holing) and expose asset			

Urban Areas

Under no circumstances shall construction, digging or excavating work be carried out: within 1.5m of AARNet assets without first locating and identifying the AARNet asset by an accredited locator and under the supervision of an accredited plant location contractor.

Rural Areas

Under no circumstances shall construction, digging or excavating work be carried out within 10m of AARNet plant be carried out without first locating and identifying the AARNet asset by an accredited locator and under the supervision of an accredited plant location contractor.

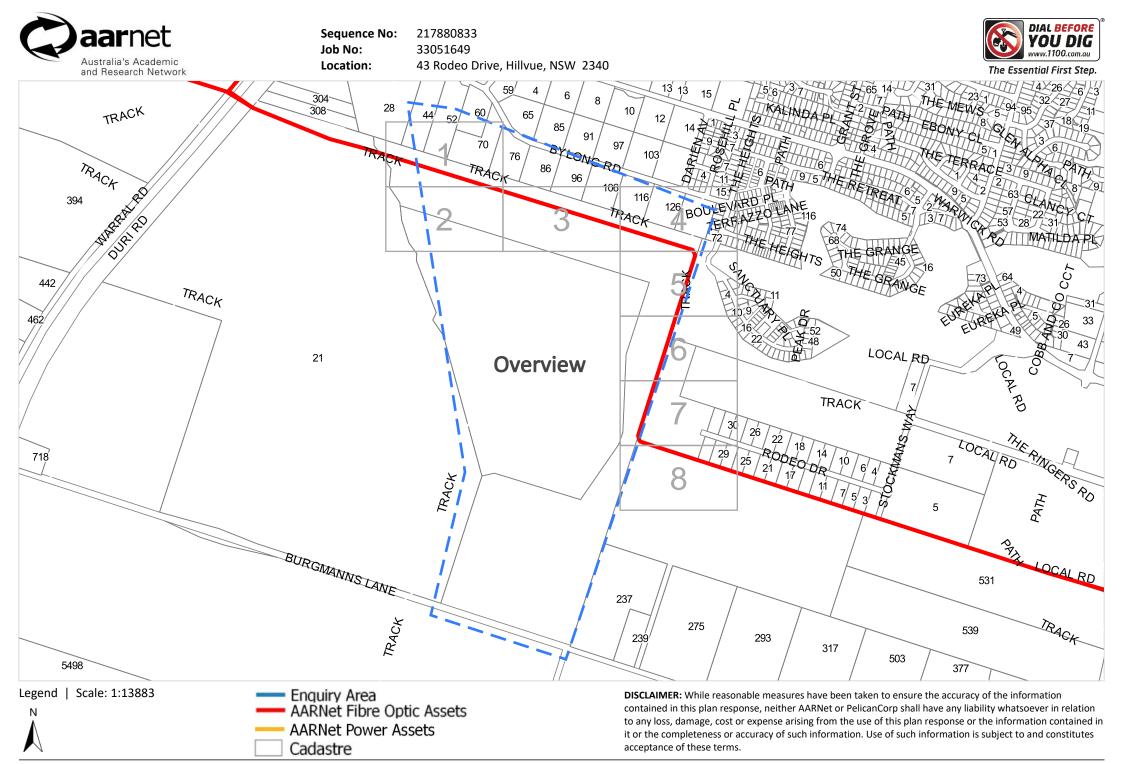
ASSET RELOCATIONS

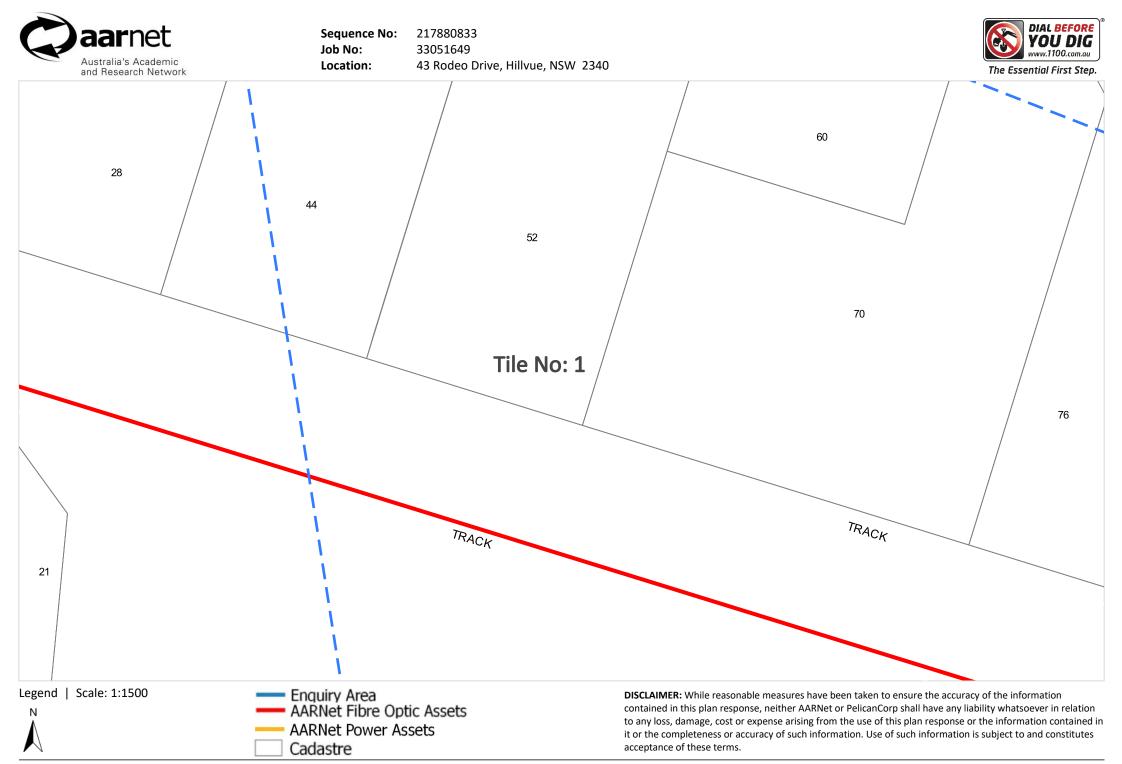
You are not permitted to relocate, modify or alter any AARNet assets under any circumstances. Please contact AARNet Infrastructure Development Group via email apl-dig@aarnet.edu.au for all enquiries relating to the relocation of AARNet assets.

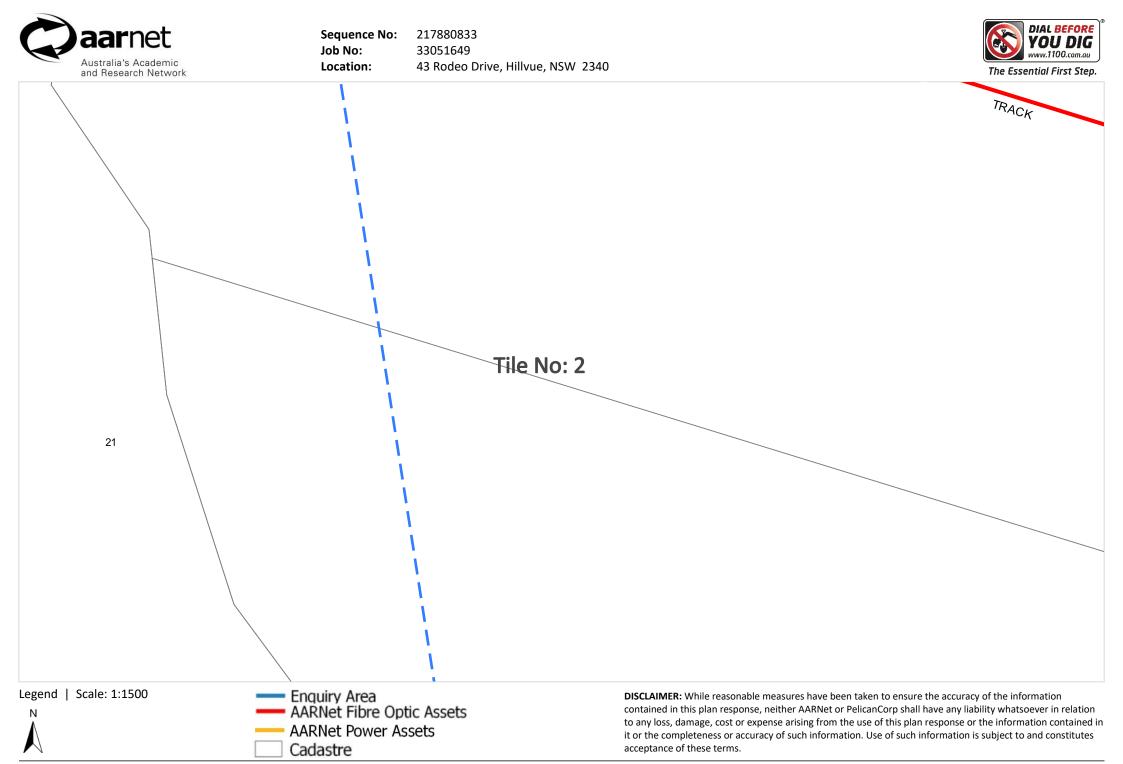
DAMAGE

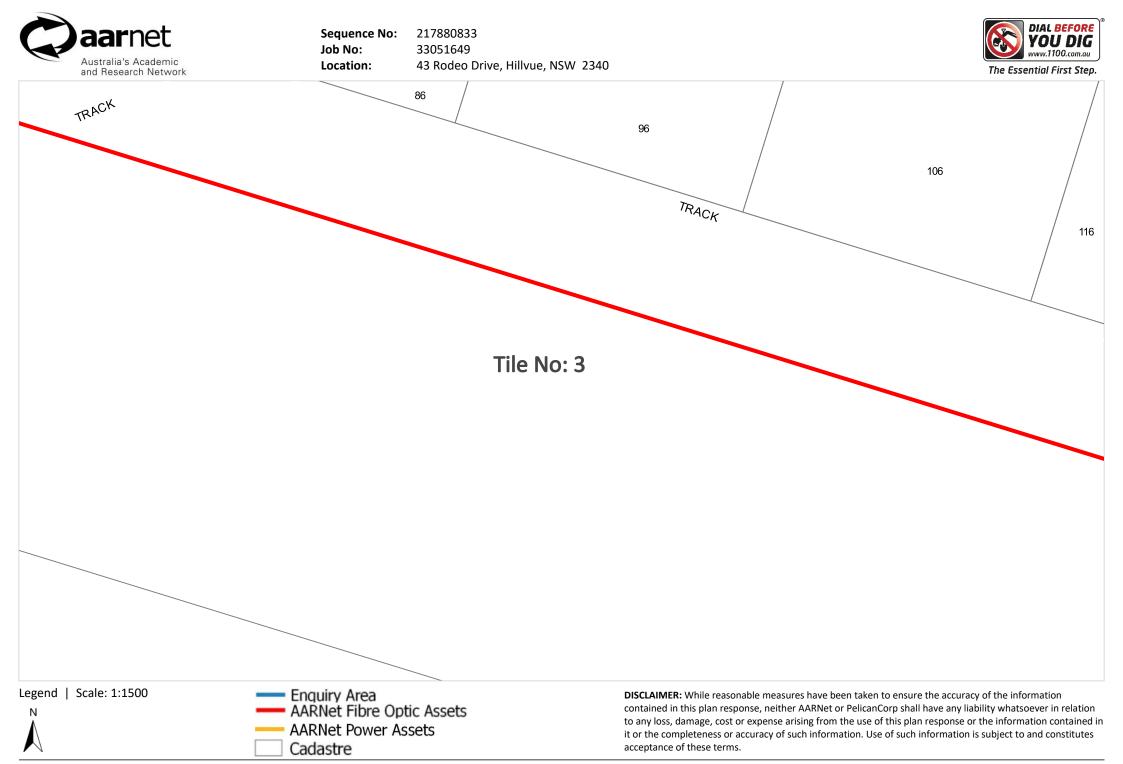
AARNet will seek Compensation for any loss caused by damage to its assets. Damage to any AARNet asset must be immediately reported to AARNet NOC on 1300 APL NOC (1300 275 662).

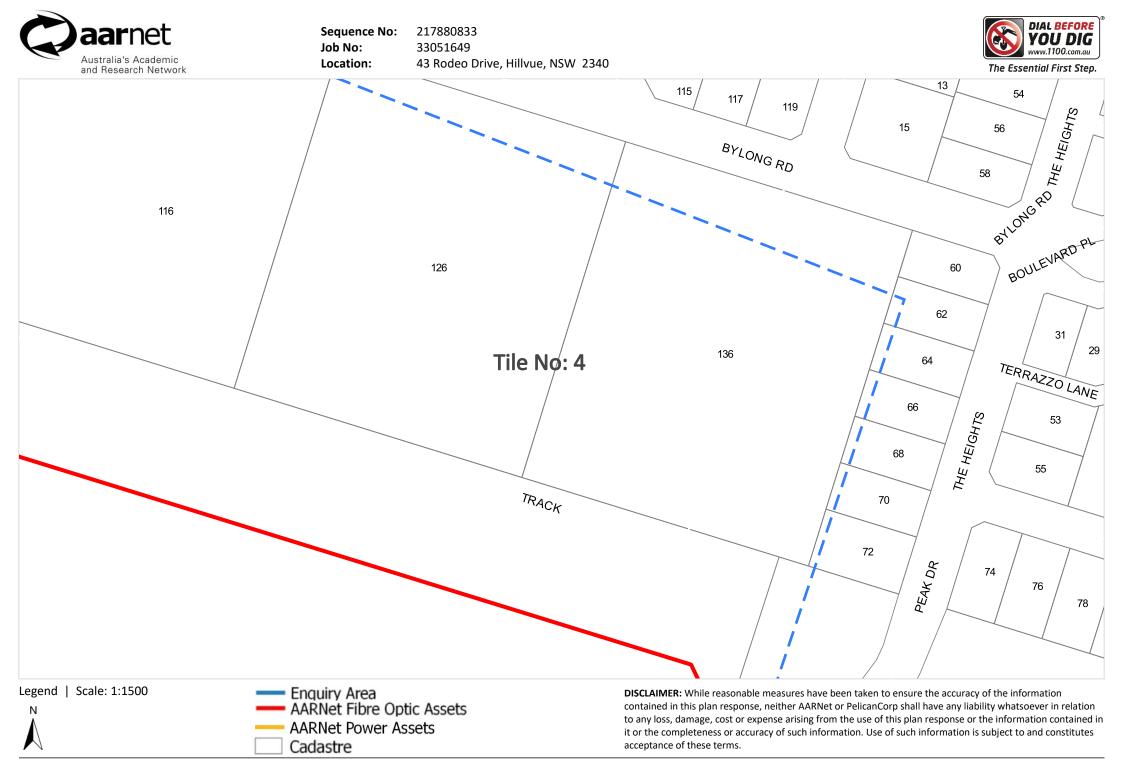
FURTHER ASSISTANCE

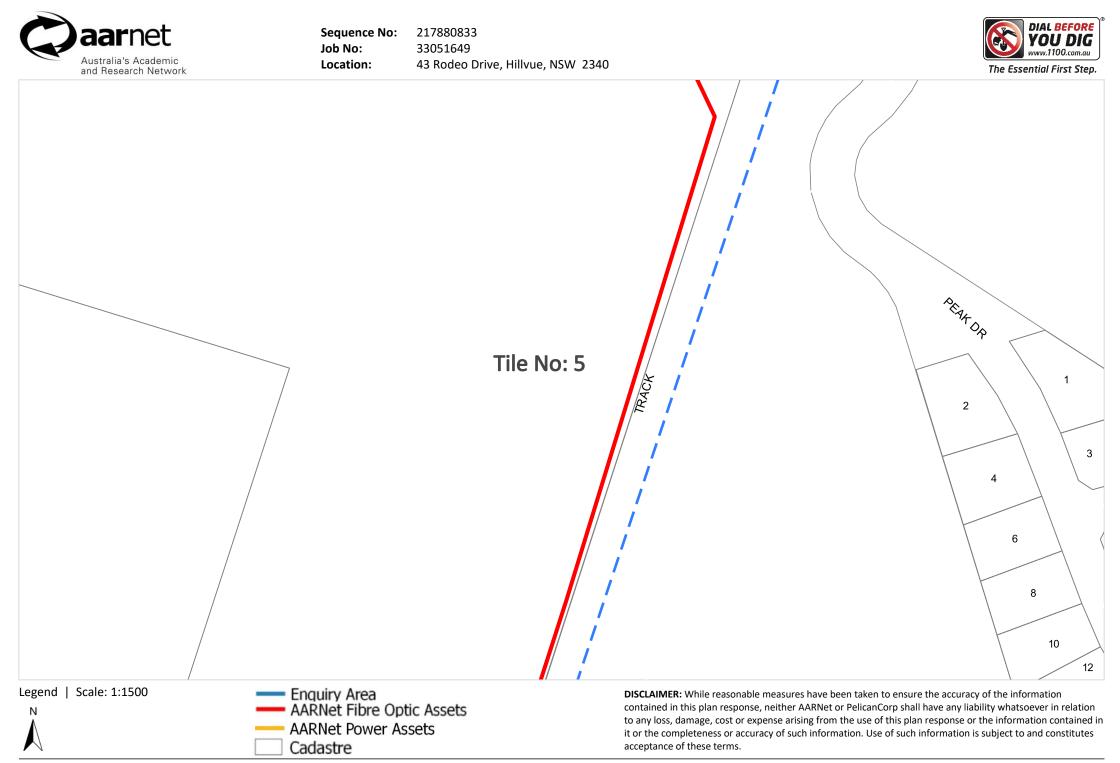

Assistance can be obtained by contacting AARNet NOC on 1300 APL NOC (1300 275 662) Where an on-site location is provided by an accredited locator, the owner is responsible for all costs associated with hand digging or use of non-destructive water jet method (pot holing) to visually locate AARNet assets. If plant location drawings or visual location of AARNet assets by digging reveals that the location of AARNet plant is situated wholly or partly within the owner work area, then AARNet Infrastructure Development Group apl-dig@aarnet.edu.au must be contacted to discuss possible engineering solutions.

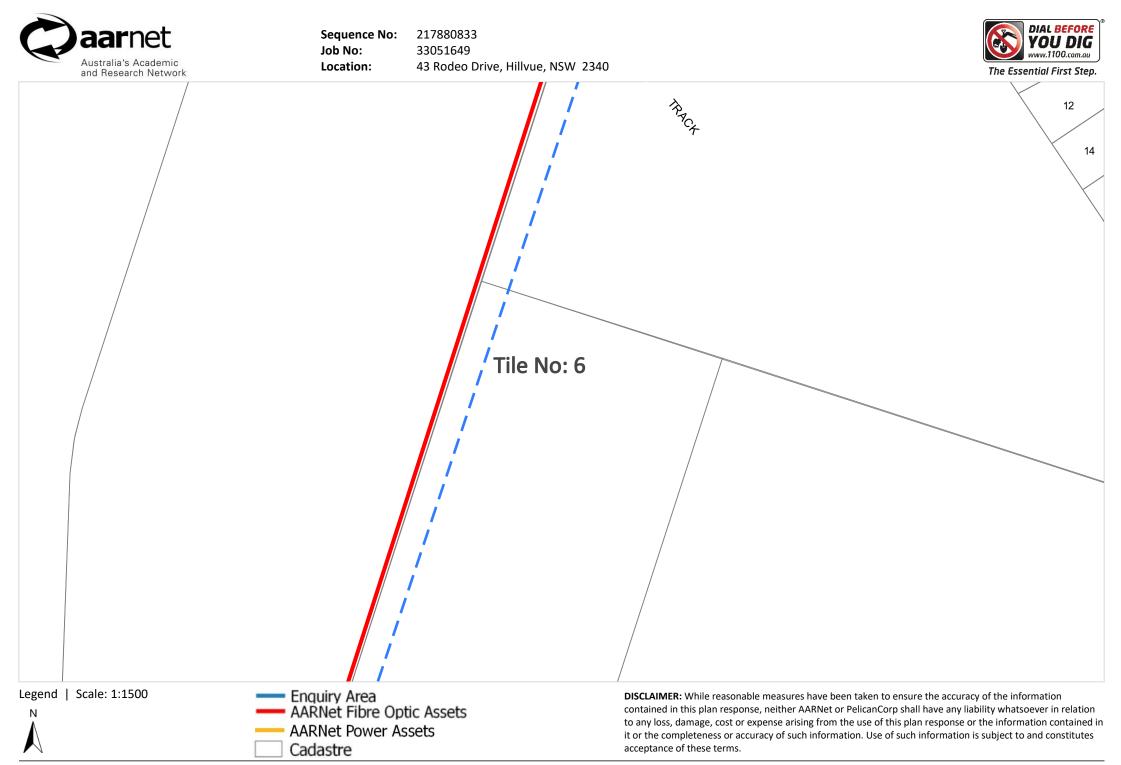


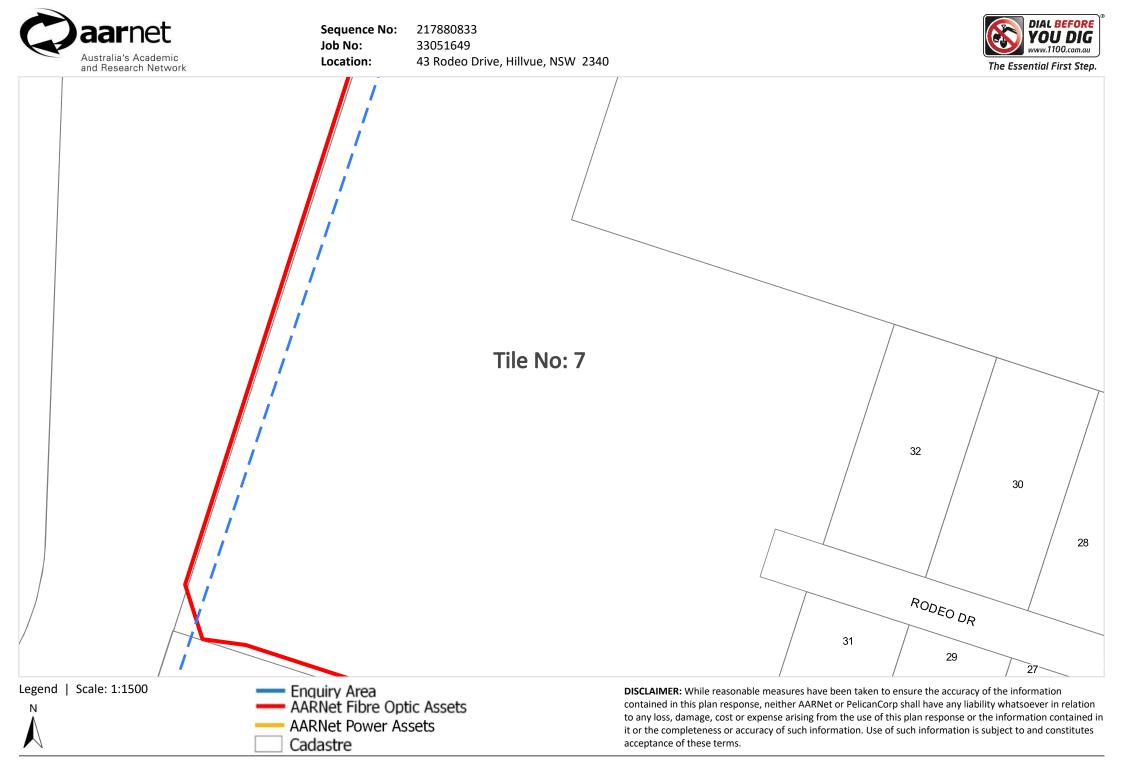

While reasonable measures have been taken to ensure the accuracy of the information contained in this plan response, neither AARNet or PelicanCorp shall have any liability whatsoever in relation to any loss, damage, cost or expense arising from the use of this plan response or the information contained in it or the completeness or accuracy of such information. Use of such information is subject to and constitutes acceptance of these terms.

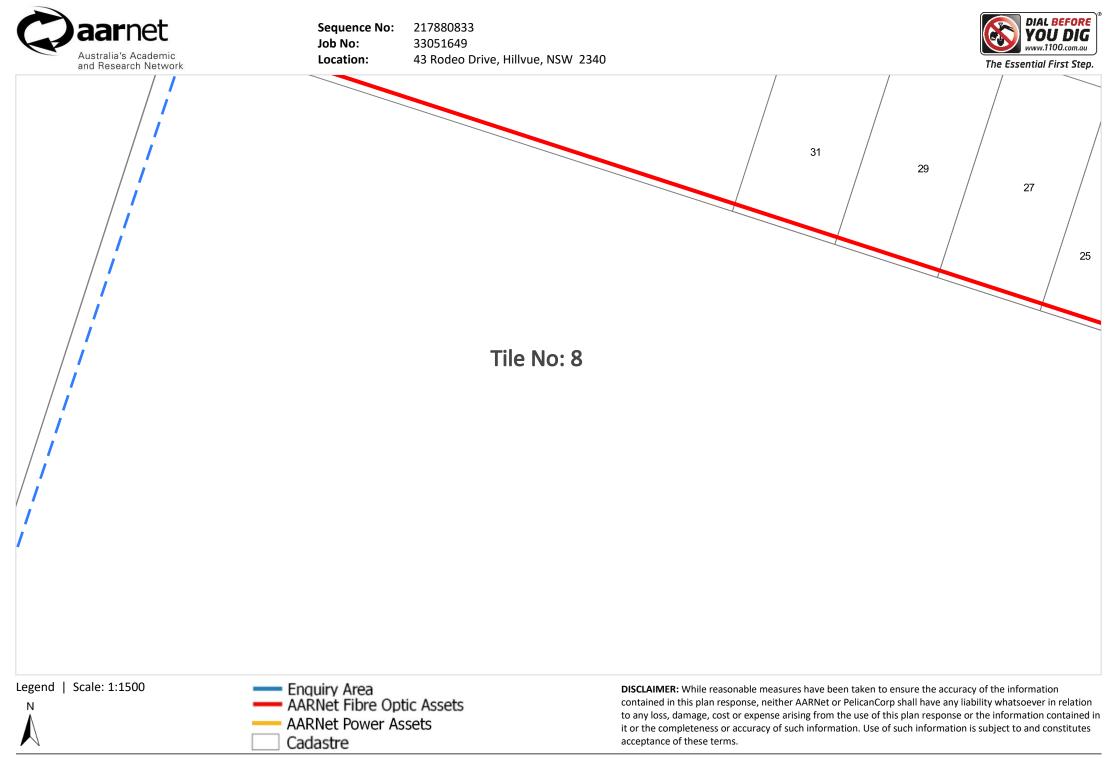

General Enquires 1300 APL NOC (1300 275 662)


To resubmit or change the nominated search area contact DBYD via Phone 1100 or <u>www.1100.com.au</u>









Date: Sunday, 6 November 2022

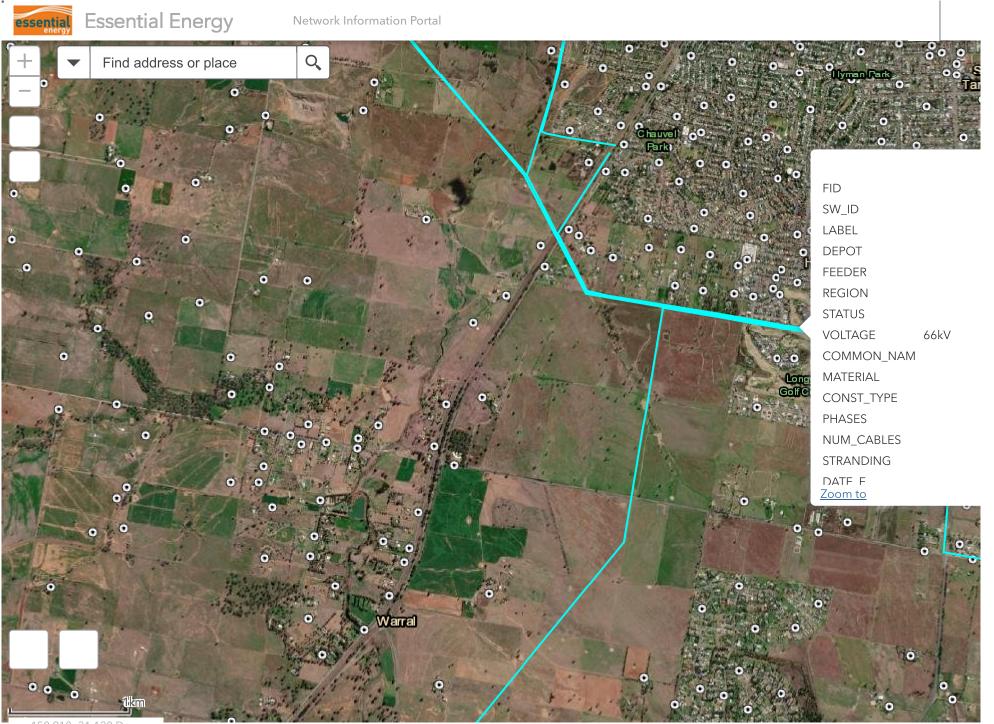
To: Elizabeth Ogunsote

Company: Not supplied

Address: 24, Fitzroy Street Tamworth NSW 2340

ELECTRICAL CABLE / WATER PIPE LOCATION

Dear Elizabeth Ogunsote


With reference to your enquiry:

- Location: 43 Rodeo Drive Hillvue NSW 2340
- Sequence No: 217880832
- Dial Before You Dig Job No: 33051649
- Dial Before You Dig Customer No: 3249927

Your specified area of interest is too large for automatic response. Please consider whether you need the full area and submit smaller request(s), each no longer than 1.6 km or contact Technical Enquiries on 13 23 91 for locations longer than 10 km only.

<u>Note</u>: the excavator must not assume that there may not be assets owned by other network operators in the area of interest.

1

150.910 -31.128 Degrees

When working near underground electrical infrastructure

NSW legislation requires people who are planning to do excavation work to obtain copies of underground electricity cable plans through Dial Before you Dig (Phone 1100) and to make sure that the plans are no more than 30 days old when excavation commences.

The aim of the legislation is to ensure that when workers dig or drive items near underground electricity cables, ducting, and pipes, they will establish the exact location of the cables and thus avoid coming into contact with them or damaging them. These items carry vital services such as electricity, water, gas and communications, and establishing their location before digging will help ensure worker safety and prevent damage to the network which may cause disruption of essential services to local communities.

Excavate safely and protect underground assets

Dial Before You Dig (DBYD) is the first step to excavating safely. You should use DBYD when you will be undertaking (but not restricted to) the following:

- Any excavation using machinery digging deeper than 150mm. This includes but is not restricted to back hoes, excavators, borers & kanger hammers (ploughing or ripping activities)
- Any excavation using hand tools deeper than 300mm which includes shovels, spades and crow bars
- Any vertical or horizontal boring.

Note: The above examples are general and may not cover all situations in the regulations where a DBYD would be required e.g. driving metal posts in the ground.

Regardless of the size of your project you should lodge an enquiry with DBYD before commencing work. This applies to small tasks like backyard landscaping, driving items into the ground as well as heavy work such as directional boring or directional drilling. DBYD strive to respond to enquiries within two business days.

Dial Before You Dig

- > Phone 1100
- > Web <u>www.1100.com.au</u>
- Download the DBYD iPhone app

The Essential First Step

When a DBYD has been obtained, contact Essential Energy on **13 23 91** to identify any underground pipes and/or cables in the vicinity of excavation works to be carried out. Allow at least **two weeks or 10 working days advance notice** in your construction program to permit Essential Energy time to allocate the necessary field resources to carry out an onsite inspection if required. This service may incur a fee & should be stated at the time of making the appointment.

In the event the excavation does not commence within 28 days of receipt of a plan, a new plan should be obtained. The excavator **must** retain the plans on site for the duration of the excavation works.

Your responsibility

All individuals have a duty of care they must observe when working in the vicinity of underground cables, ducts and pipes. Be aware of the requirement set out in the latest WorkCover Codes of Practice 'Work near Underground Assets Guideline' and 'Work near Overhead Powerlines' which can be viewed at **www.workcover.nsw.gov.au** or you can purchase a copy of the Code of Practice by contacting WorkCover on 1300 799 003.

You should also be familiar with Essential Energy's operational procedures 'Work near Essential Energy's underground assets' CEOP8041 and 'Construction work near electricity network' CEOP1116, which can be found at essentialenergy.com.au/construction

- Employers: If you're an employer or employing someone to excavate, complete construction or drive items into the ground even at home you have a legal obligation to ensure their safety
- Excavators: It is the excavator's responsibility to visually expose the underground pipes and cables manually before any construction begins.

Note – when excavating involving high pressure water or compressed air to break up the ground, which is then removed by a powerful vacuum unit to expose critical utilities after they have been electronically located to confirm identity, size, number of services and depth, checks should be carried out to ensure the pressure is acceptable for all cables and other assets which may be found prior to commencing pot holing by this method. Warning: CONSAC cables shouldn't be potholed by this method and must be de-energised before any work carried out near them. It's recommended to only use air/vacuum equipment to pot hole that operates at or less than 13,790Kpa (2000psi).

Be safe, because they need you

No Go Zone for powered excavation

Extract from WorkCover "Work near Underground Assets"

TABLE 1: Types of assets and limits of underground approach

Assets	Clearances	No Go Zone for Powered Excavation	Controls	Typical Depths
Low voltage electricity cables – voltages less than or equal to 1000V (1kV)	Close proximity with the use of hand tools	300 mm	Must contact asset owner for specific conditions	450 – 750 mm
Electricity conductors from 11,000V (11kV) up to 33,000V (33 kV)	Close proximity with the use of hand tools	600 mm	Must contact asset owner for specific conditions	900 mm
Underground sub-transmission cables 33,000V up to 132,000V (132 kV)	Must contact asset owner	Must contact asset owner	Must be carried out under the supervision of the asset owner	900 mm
High Voltage Electricity cables – voltages from 1000V (1kV) up to (33 kV)	Close proximity with the use of hand tools	Must contact asset owner	Must contact asset owner for specific conditions	600 - 1000 mm
Extra High Voltage Electricity Transmission cables – voltages above (132 kV) and 330,000V (330 kV)	Must contact asset owner	Must contact asset owner	Work must be carried out under the supervision of the asset owner	800 - 1200 mm

How to expose cables or pipes

Location plans provide an indication of the presence of underground assets only; they do not pinpoint the exact location. This is why manual exposure is required, which can be done by potholing. Underground assets must first be exposed by pot-holing with non-conductive tools to identify their location. Excavation with hand tools shall be carried out carefully up to, but not closer than, the minimum distances specified in Table 1. Several potholes may need to be dug manually to determine and satisfy yourself of the exact locations of cables or pipes to avoid any mishaps. Manual pot-holing needs to be undertaken with extreme care, common sense and while employing techniques least likely to damage cables. For example, orientate shovel blades and trowels parallel to the cable rather than digging across the cable. Look out for sand, plastic strips or specially marked bricks when excavating, which signal the presence of underground cables.

Only once all underground assets have been located, marked and protected against damage can the excavation proceed with caution.

No Go Zone for powered excavation

Directional boring is powered excavation and contact with the asset owner must be made before excavation takes place. For directional boring across the line of an asset a minimum clearance of **300 mm** from the asset shall be maintained. When boring across the line of an underground asset, the location of the asset/s shall be positively proven by hand digging (pot-holing) or by another approved method and a safety observer appointed.

Note: Where the risk assessment identifies a potential risk of making contact with either underground assets, safety observer/s would be required. The safety observer's responsibility is to ensure that approach distances from underground and overhead assets are maintained.

For boring under electricity cables, the only true way of knowing where the directional drill is, is to "see" it. It is necessary to excavate a slit trench at right angles to the approaching drill and 500mm deeper than the asset being protected and beside the cables to confirm the depth of the cables and ensure the drill is not within the minimum approach distance of the cable (specified in Table 1).

For directional boring parallel to the asset and at the level of the asset, a clearance of **500 mm** shall be maintained from the edge of the nearest asset and pot holed at 10m intervals to ensure clearances are maintained with a safety observer appointed.

The four Ps of safe excavation

- Plan Plan your job. Use the Dial Before You Dig service before your job is due to begin to help keep your project safe. Contact Essential Energy on 13 23 91 to identify any underground pipes and/or cables in the vicinity
- Pothole Potholing (digging by hand) is a method to assist in establishing the exact location of all underground infrastructure. Only use air/vacuum equipment to pot hole that operates at or less than 13,790Kpa (2000psi)
- 3. Protect Protecting and supporting exposed infrastructure is the excavator's responsibility. Always erect safety barriers in areas at risk to protect underground networks
- 4. Proceed But ONLY when you have <u>planned</u>, <u>potholed</u> and put the <u>protective</u> measures in place.

Be safe, because they need you

Digging safely

You cannot be too careful when it comes to safe excavation. Avoiding underground ducting pipe and cable damage is as simple as having the right tools, the right skills and the right information.

- Study the plans you receive from asset owners thoroughly
- > Check to see if they relate to the area you requested and make sure you understand them. If you are unclear about what the symbols mean or how to proceed, contact the relevant network owner
- > Check the work area for other forms of electrical equipment, including street lights, ground substations, phone boxes or traffic lights – all good indicators that underground cables will be present
- Remember underground cables can also be present even if overhead powerlines have been identified
- Never assume the depth or alignment of pipes and cables. Installed networks assets may not have been installed in a straight line
- > Always observe any instructions stated on the plans provided by the asset owner
- Remember, plans and maps identifying the location of underground cables and depths can alter after road upgrades or developments and underground assets may be as little as a few millimetres below the surface
- Other service lines (for example gas mains (pipes) and communication cables) can also be present.
 Shared trenches are frequently used on underground runs to premises
- New electrical cables are sometimes laid using existing old conduits
- > Various methods of protecting underground cables may be utilised (for example electrical bricks, conduits, concrete or flat PVC barriers) or may be direct buried or installed by under-boring methods which may have no visual disturbance of the ground
- Ensure overhead & electrical structures aren't undermined during excavation.

Earth cables

Earth cables are an important part of all electrical installations and have two main purposes:

- > To safeguard against the possibility of danger to life
- To maintain the good working order of the electrical network.

They can have potentially dangerous electrical current flowing through them. Usually they have a green and yellow covering but could be a bare cable buried directly in the ground.

Even if the map provided does not show underground cables, earth cables may be present. These earth cables are usually associated with electrical equipment located on the pole such as transformers, switching equipment, permanent earthing points or Padmount / kiosk subs.

It's recommended that if any excavation is to take place within **10m** of a power pole with a cable running down it into the ground, contact is made with Essential Energy on **13 23 91** to have the earthing system located. While an effort is made to install the earthing under the powerline and guy if installed, sometimes circumstances may require a variation to this, so done assume where they are installed. The distance and configuration that the earthing cable is installed varies due to the soil conditions and system type (e.g. Single wire earth return (SWER)).

Additional earthing electrodes stakes may be installed to ensure the required earthing reading is obtained.

WARNING:SWER installations

- > Contacting SWER earthing can be deadly
- > Voltage is present on SWER transformer earthing systems either at 12.7 kV or 19.1kV
- > NO excavation is allowed within 10 metres of a SWER transformer pole.

Excavating around electrical poles

Anyone intending to excavate around any electrical item risks serious injury or death as a result of contact with underground cables or the earthing system.

Assets around poles

For excavation depths greater than 250mm near power poles and stays you must arrange for an Essential Energy representative to attend the worksite 2 weeks prior to work commencing. Call Essential Energy on 13 23 91. More information is available in Essential Energy's operational procedure, 'Work near Essential Energy's underground assets: CEOP8041' which can be found at essentialenergy.com.au/construction

Unless otherwise agreed, underground assets and other obstructions around poles are to be kept a minimum distance of 300mm from the periphery of the pole, to allow inspections by the asset owner employees.

No excavation within 10 metres of a SWER transformer pole is to occur without the approval of the local electricity asset owner. It should be noted that the NSW Service and Installation Rules require a sketch of the underground service/consumers mains to be marked inside the switchboard.

The risks are higher for those earthing systems of the SWER constructions as the earthing is utilised as the return path.

Be safe, because they need you

Typically any electrical item installed on a pole will have an earth wire running down the pole into the ground, which includes:

- > Transformers in urban and rural situations
- Isolation, protection and regulation items. >

Transformers located on the ground (padmount and kiosk), besides having underground electrical cables, will have an earthing system installed around them.

Damaged earthing

If an earth cable has been damaged, maintain a clearance of eight (8) meters and contact Essential Energy on 13 23 91. DONT ATTEMPT to re-join the cable - this will place you at serious risk.

Operating near underground cables and earths

- Underground cables should never be moved or relocated unless under the express authority of the organisation or person responsible for the powerlines
- The excavator shall report all damage made to Essential Energy assets immediately. Damage includes: gouges, dents, holes and gas escapes
- Never undermine poles, cables, earthing cable, padmount and kiosk substations.

Above: Poles with become unstable if undermined

Make sure it can't go wrong

You should ensure that people at work, their equipment (tools and plant) or materials do not come within close proximity to underground powerlines unless:

- A written risk assessment has been completed and a > safe system of work implemented
- The relevant safety precautions and worker training > requirements, including WorkCover Codes of Practice and Essential Energy's requirements, have been implemented and complied with.

If working in close proximity to underground cables is unavoidable and the risk assessment has been completed, the following should be considered to control the risks and ensure work safety:

- Have the power switched off by Essential Energy >
- Consider all conductors as live unless it is positively > known they have been de-energised
- Where appropriate, provide ground markings to > identify location and warn workers of the presence of underground power and other assets.

Emergency situations

In the event that contact with an underground powerline occurs or cables are exposed or damaged, remembering the following points could help save a life:

- If the situation is at all life threatening, immediately contact the Emergency Services on 000 (triple zero)
- Call Essential Energy's 24-hour supply interruptions > line - 13 20 80 to switch off the power if required or report damage or exposure cables / conduits
- If any other underground assets are damaged you should contact the affected asset owners immediately

- Treat underground cables as alive, even if they appear to be dead
- Keep everyone at least eight metres away from the > incident site, the person or any machinery making contact with underground cable
- Don't panic or touch the person > receiving the electric shock this could place you at risk
- Untrained, unequipped persons should not attempt to rescue a person receiving an electric

shock. All too often secondary deaths occur when others go to the aid of earlier victims

- Remain on/inside the machinery until the supply is disconnected
- If possible, break contact between the machinery and underground cable.

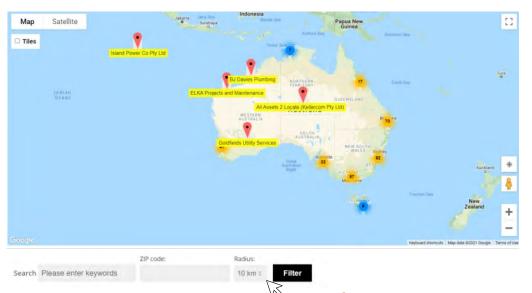

For more information

Essential Energy's Public Safety team is available to facilitate Electrical Awareness sessions and discuss any questions relating to electrical safety. For more information on electrical safety please call

- Essential Energy General Enquiries 13 23 91 >
- Essential Energy Supply Interruptions 13 20 80 >
- > WorkCover NSW 13 10 50
- Dial Before You Dig www.1100.com.au 1100 >
- Follow us >
- or visit essentialenergy.com.au/safety >

Safety first: Before you dig or drive items into the ground

- 1. Contact DBYD
- DO NOT attempt to excavate with in 10m of any power pole or electrical item
- Contact Essential Energy on 13 23 91 for assistance to locate cables and earthing З.
- Locate asset: Pot-hole Δ
- Proceed only if you have satisfied yourself it is safe.


Certified Locating Organisations (CLO)

Find the closest CLO to your worksite on: https://dbydlocator.com/certified-locating-organisation/

Read the disclaimer and click:

Q Accept and Search Now

A national map and an A-Z list of Certified Locating Organisations is displayed.

Use the map to zoom to your work area and choose the closest $\mathbf{\mathbf{V}}$ Locator indicated.

OR search by entering the **postcode** of your work area.

- 1. Enter the post/zip code
- 2. Choose your search radius
- 3. Click filter

(If there is no result, you may have to increase the search radius)

4. Click on the closest **V** for CLO details or view the results displayed below the map

Locator skills have been tested, and the Organisation has calibrated location and safety equipment.

Telstra is aware of each Certified Locating Organisation and their employee locators.

Only a DBYD Certified Locator registered with a Certified Locating Organisation is authorised to access Telstra network for locating purposes.

Each Certified Locator working for a CLO is issued with a photo ID Card, authorising them to access Telstra pits and manholes for the purpose of cable and plant locations.

Please ask to see your Locators' CLO ID Card.

Before You Dig Australia

Think before you dig

This document has been sent to you because you requested plans of the Telstra network through Before You Dig Australia (BYDA).

If you are working or excavating near telecommunications cables, or there is a chance that cables are located near your site, you are responsible to avoid causing damage to the Telstra network.

Please read this document carefully. Taking your time now and following the steps below can help you avoid damaging our network, interrupting services, and potentially incurring civil and criminal penalties.

Our network is complex and working near it requires expert knowledge. Do not attempt these activities if you are not qualified to do so.

Your checklist

1. Plan

Plan your work with the latest plans of our network. Plans provided through the BYDA process are indicative only*.

This means the actual location of our asset may differ substantially from that shown on the plans.

Refer to steps 2 and 3 to determine actual location prior to proceeding with construction.

2. Prepare

Engage a DBYD Certified Locating Organisation (CLO) via <u>dbydlocator.com</u> to identify, validate and protect Telstra assets before you commence work.

3. Pothole

Validate underground assets by potholing by hand or using non-destructive vacuum extraction methods.

Electronic detection alone (step 2) is not deemed to validate underground assets and must not be used for construction purposes.

If you cannot validate the Telstra network, you must not proceed with construction.

4. Protect

Protect our network by maintaining the following distances from our assets:

- > 1.0m Mechanical Excavators, Farm Ploughing, Tree Removal
- > 500 mm Vibrating Plate or Wacker Packer Compactor
- 600 mm Heavy Vehicle Traffic (over 3 tonnes) not to be driven across Telstra ducts or plant
- > 1.0 m Jackhammers/Pneumatic Breakers
- > 2.0 m Boring Equipment (in-line, horizontal and vertical)

5. Proceed

You can proceed with your work only once you have completed all the appropriate preparation, potholing and protection.

Useful information

Report any damage immediately

https://service.telstra.com.au/customer/general/forms/report-damage-totelstra-equipment

13 22 03

If you receive a message asking for an account or phone number say "I Don't have one" Then say "Report Damage" then press 1 to speak to an operator.

Relocating assets

If your project requires the relocation of a Telstra asset, please contact the Telstra Network Integrity Group:

Request Asset Relocation Or Commercial Works (telstra.com.au)

NetworkIntegrity@team.telstra.com

1800 810 443 (AEST business hours only)

Never try to move or alter our network infrastructure without authorisation. By law, only authorised people can work on our assets or enter a facility owned or operated by us. Any interference, including unauthorised entry or tampering, may result in legal action.

Further information

Plan enquiries

1800 653 935 (AEST business hours only)

<u>Telstra.Plans@team.telstra.com</u>

Information on how to find cables and request asset relocations:

https://www.telstra.com.au/consumer-advice/digging-construction

Asset Plan Readers

PDF Adobe Acrobat Reader DC Install for all versions DWF Download Design Review | DWF Viewer | Autodesk

Disclaimer and legal details

*Telstra advises that the accuracy of the information provided by Telstra conforms to Quality Level D as defined in AS5488-2013.

It is a criminal offence under the Criminal Code Act 1995 (Cth) to tamper or interfere with telecommunications infrastructure.

Telstra will also take action to recover costs and damages from persons who damage assets or interfere with the operation of Telstra's networks.

By receiving this information including the indicative plans that are provided as part of this information package you confirm that you understand and accept the risks of working near Telstra's network and the importance of taking all of the necessary steps to confirm the presence, alignments and various depths of Telstra's network. This in addition to, and not in replacement of, any duties and obligations you have under applicable law.

When working in the vicinity of a telecommunications plant you have a "Duty of Care" that must be observed. Please read and understand all the information and disclaimers provided below.

The Telstra network is complex and requires expert knowledge to interpret information, to identify and locate components, to pothole underground assets for validation and to safely work around assets without causing damage. If you are not an expert and/or qualified in these areas, then you must not attempt these activities. Telstra will seek compensation for damages caused to its property and losses caused to Telstra and its customers. The 5 P's to prevent damage to Telstra assets are listed above. Construction activities and/or any activities that potentially may impact on Telstra's assets must not commence without first undertaking these steps. Construction activities can include anything that involves breaking ground, potentially affecting Telstra assets.

If you are designing a project, it is recommended that you also undertake these steps to validate underground assets prior to committing to your design.

This Notice has been provided as a guide only and may not provide you with all the information that is required for you to determine what assets are on or near your site of interest. You will also need to collate and understand all of the information received from other Utilities and understand that some Utilities are not a part of the BYDA program and make your own enquiries as appropriate. It is the responsibility of the entities undertaking the works to protect Telstra's network during excavation / construction works.

Telstra owns and retains the copyright in all plans and details provided in conjunction with the applicant's request. The applicant is authorised to use the plans and details only for the purpose indicated in the applicant's request. The applicant must not use the plans or details for any other purpose.

Telstra plans or other details are provided only for the use of the applicant, its servants, agents, or Certified Locating Organisation. The applicant must not give the plans or details to any parties other than these and must not generate profit from commercialising the plans or details.

Telstra, its servants or agents shall not be liable for any loss or damage caused or occasioned by the use of plans and or details so supplied to the applicant, its servants and agents, and the applicant agrees to indemnify Telstra against any claim or demand for any such loss or damage.

Please ensure Telstra plans and information provided always remains on-site throughout the inspection, location, and construction phase of any works.

Telstra plans are valid for 60 days after issue and must be replaced if required after the 60 days.

Data Extraction Fees

In some instances, a data extraction fee may be applicable for the supply of Telstra information. Typically, a data extraction fee may apply to large projects, planning and design requests or requests to be supplied in non-standard formats. For further details contact Telstra Planned Services.

Telstra does not accept any liability or responsibility for the performance of or advice given by a Certified Locating Organisation. Certification is an initiative taken by Telstra towards the establishment and maintenance of competency standards. However, performance and the advice given will always depend on the nature of the individual engagement.

Neither the Certified Locating Organisation nor any of its employees are an employee or agent for Telstra. Telstra is not liable for any damage or loss caused by the Certified Locating Organisation or its employees.

Once all work is completed, the excavation should be reinstated with the same type of excavated material unless specified by Telstra

The information contained within this pamphlet must be used in conjunction with other material supplied as part of this request for information to adequately control the risk of potential asset damage.

When using excavators and other machinery, also check the location of overhead power lines.


Workers and equipment must maintain safety exclusion zones around power lines

WARNING: Telstra plans and location information conform to Quality Level 'D' of the Australian Standard AS 5488 -Classification of Subsurface Utility Information. As such, Telstra supplied location information is indicative only. Spatial accuracy is not applicable to Quality Level D. Refer to AS 5488 for further details. Telstra does not warrant or hold out that its plans are accurate and accepts no responsibility for any inaccuracy shown on the plans. FURTHER ON SITE INVESTIGATION IS REQUIRED TO VALIDATE THE EXACT LOCATION OF TELSTRA PLANT PRIOR TO COMMENCING CONSTRUCTION WORK. A plant location service is an essential part of the process to validate the exact location of Telstra assets and to ensure the assets are protected during construction works. The exact position of Telstra assets can only be validated by physically exposing them. Telstra will seek compensation for damages caused to its property and losses caused to Telstra and its customers.

Privacy Note

Your information has been provided to Telstra by BYDA to enable Telstra to respond to your BYDA request. Telstra keeps your information in accordance with its privacy statement. You can obtain a copy at <u>www.telstra.com.au/privacy</u> or by calling us at 1800 039 059 (business hours only).

217880830 (1).dwf

AUTODESK Viewer

OPENING ELECTRONIC MAP ATTACHMENTS -

Telstra Cable Plans are generated automatically in either PDF or DWF file types dependant on the site address and the size of area selected. You may need to download and install free viewing software from the internet e.g.

PDF Map Files (max size A3)

Adobe Acrobat Reader (http://get.adobe.com/reader/),

DWF Map Files (all sizes over A3)

Autodesk A360 (https://360.autodesk.com/viewer) or

Autodesk Design Review (<u>http://usa.autodesk.com/design-review/</u>) for DWF files. (Windows)

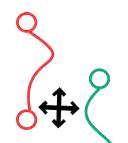
DWF

Telstra DBYD map related enquiries

email - Telstra.Plans@team.telstra.com

1800 653 935 (AEST Business Hours only)

REPORT ANY DAMAGE TO THE TELSTRA NETWORK IMMEDIATELY


Report online - <u>https://service.telstra.com.au/customer/general/forms/report-damage-to-telstra-equipment</u>

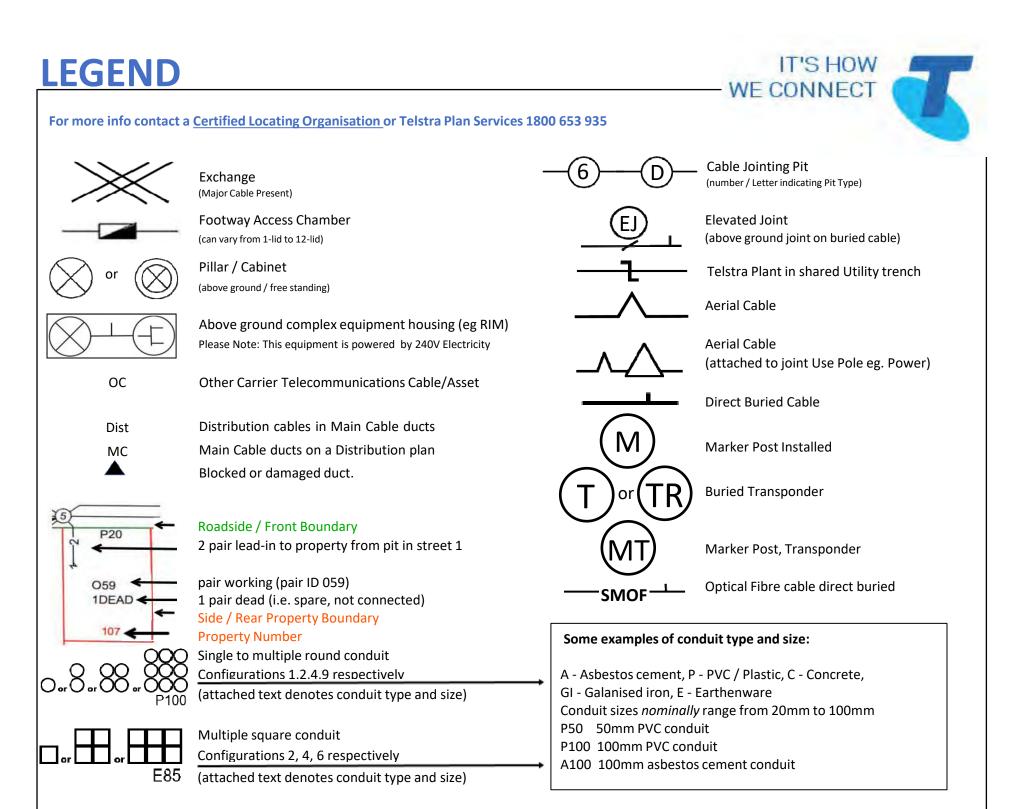
Ph: 13 22 03

If you receive a message asking for a phone or account number say: "I don't have one" then say "Report Damage" then press 1 to speak to an operator.

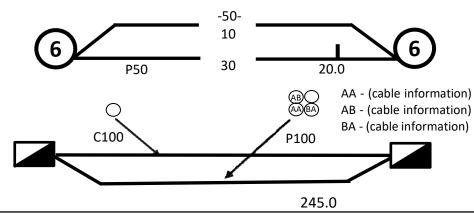
Telstra New Connections / Disconnections
13 22 00

Telstra asset relocation enquiries: 1800 810 443 (AEST business hours only). NetworkIntegrity@team.telstra.com https://www.telstra.com.au/consumer-advice/digging-construction

Certified Locating Organisation (CLO)


https://dbydlocator.com/certified-locating-organisation/

DBYDCertification B Please refer to attached Accredited Plant Locator.pdf



Telstra Smart Communities Information for new developments (developers, builders, homeowners) <u>https://www.telstra.com.au/smart-community</u>

Telstra Map Legend v3_6b

Some Examples of how to read Telstra Plans

One 50mm PVC conduit (P50) containing a 50-pair and a 10-pair cable between two 6-pits. approximately 20.0m apart, with a direct buried 30-pair cable along the same route

Two separate conduit runs between two footway access chambers (manholes) approximately 245m apart A nest of four 100mm PVC conduits (P100) containing assorted cables in three ducts (one being empty) and one empty 100mm concrete duct (C100) along

WARNING: Telstra plans and location information conform to Quality Level 'D' of the Australian Standard AS 5488 -Classification of Subsurface Utility Information. As such, Telstra supplied location information is indicative only. Spatial accuracy is not applicable to Quality Level D. Refer to AS 5488 for further details. Telstra does not warrant or hold out that its plans are accurate and accepts no responsibility for any inaccuracy shown on the plans. FURTHER ON SITE INVESTIGATION IS REQUIRED TO VALIDATE THE EXACT LOCATION OF TELSTRA PLANT PRIOR TO COMMENCING CONSTRUCTION WORK. A plant location service is an essential part of the process to validate the exact location of Telstra assets and to ensure the assets are protected during construction works. The exact position of Telstra assets can only be validated by physically exposing them. Telstra will seek compensation for damages caused to its property and losses caused to Telstra and its customers.

Telstra Map Legend v3_6b

Page 2

TELSTRA CORPORATION ACN 051 775 556

APA Group PO Box 6014 Halifax Street South Australia 5000

For your immediate information THERE IS A CRITICAL GAS PIPELINE AND/OR ASSOCIATED INFRASTRUCTURE in the area of your works.

06/11/2022

Company: Elizabeth Ogunsote 24, Fitzroy Street Tamworth NSW 2340 e.ogunsote@mossenviro.com.au

Dear Elizabeth Ogunsote

Sequence Number:	217880834	
Worksite Address:	43 Rodeo Drive	
	Hillvue	
	NSW	2340

Thank you for your Dial Before You Dig enquiry regarding the location of Gas Assets. We can confirm that the APA Group has **Critical Gas Assets** in the vicinity of the above location.

You are hereby notified that **before you commence any works** you are required to complete the attached '**Work In The Vicinity Of Critical Gas Assets**' request form and forward this to APA as soon as practicable.

As laid out in the **Duty of Care** requirements supplied, any activity in the vicinity of Critical Gas Assets operated by APA requires an Authority to Work Permit and potentially attendance on site by an APA representative during any work. Please ensure you read and comply with all the relevant requirements. Should you have any questions with regards to the attached information please contact our Qld Planning & Scheduling Officer - (07) 3215 6644.

Caution - Damage to gas assets could result in possible explosion and fire with the risk of personal injury. For Gas Emergencies please call 1800 GAS LEAK (1800 427 532)

Please find enclosed the following information:-

- APA's Duty of Care, If you are unclear of your obligations under these requirements please contact the APA Representative listed above immediately
- An overview map with your requested area highlighted to assist in locating APA's Gas Assets
- A map(s) showing APA's Gas Assets in the requested area, this information is valid for 30 days from the date of this response, please check this represents the area you requested, if it does not, please contact the APA Representative listed above immediately
- A 'Work In The Vicinity Of Critical Gas Assets' request form, please complete and forward to APA as soon as practicable via <u>PermitsQld@apa.com.au</u>, or the address above. A minimum of **5 business days** advance notification is required to process Authority To Work Request applications

The outcome of this request may be that a qualified APA Group Representative will be required on site when you undertake your proposed works, if this is the case, this will need to be arranged dependent on their availability. Whilst we will aim to facilitate this within 5 business days from a decision, **this cannot be guaranteed**.

 Mapping information is provided as AS5488-2013 Quality Level D

 APA Group • PO Box 6014 Halifax Street SA 5000 • Email: DBYDNetworksAPA@apa.com.au
 • Template: QLD Critical Jan 2022

 Page 1 of 28 • 06/11/2022
 Page 2010

Please Note: For some DBYD enquiries, you might receive 2 responses from the APA Group. Please read both responses carefully as they will relate to different assets. It is your responsibility to action all requirements set out in APA Group responses.

Please take some time to review the entire response document and check the information supplied and please let us have any feedback by sending an email to <u>DBYDNetworksAPA@apa.com.au</u> or contacting us direct on 1800 085 628.

Duty of Care - Working Around Gas Assets

General Conditions

- This location enquiry is valid for 30 days from the enquiry date
- Expired locations, i.e., over 30 days from the date of this response, require a new Dial Before You Dig request to validate location information
- The location information supplied in this document shall be used as a guide only. APA Group shall not be liable or responsible for the accuracy of any such information supplied pursuant to this request
- It is the responsibility of the excavator to expose all Gas Assets, including Gas Service pipes (see below), **by hand**. Gas Asset depths may vary according to ground conditions
- Gas Services (inlet service) connecting Gas Assets in the street to the gas meter on the property are typically **not** marked on the map
- Some Gas Assets are installed inside of a casing. The locations where a Gas Asset changes from inserted to direct burial are not marked on the map unless otherwise stated
- This information has been generated by an automated system based on the area highlighted in your DBYD request and has not been independently verified. It is your responsibility to ensure that the information supplied in this response matches the dig site you defined when submitting your Dial Before You Dig enquiry. If the information does not match the dig site or you have any question, please contact APA immediately using the details listed on the first page and / or please resubmit your enquiry
- For Gas Emergencies please call 1800 GAS LEAK (1800 427 532)

Critical Gas Assets - Conditions

It is your responsibility to follow these important conditions when working in the vicinity of Critical Gas Assets

- A 'Work In The Vicinity Of Critical Gas Assets" request form must be submitted to APA Group PRIOR to any work commencing, a minimum of **5 business days** are required to arrange attendance by an APA Group representative
- Whilst we will aim to facilitate this within **5 business days** from a decision, **this cannot be guaranteed**. Charges for APA Group supervision may apply
- Any works in the vicinity of Critical Gas Assets requires approval from APA via APA's 'Authority to work" permit and supervision by an APA Group representative unless expressed otherwise on the "Authority to work" permit.
- Penalties apply to excavators commencing work in the vicinity of Critical Gas Assets **prior to receiving an** APA Group 'Authority to Work' permit and an APA Group representative is present

Rates applicable to APA on-site representation for supervision or location

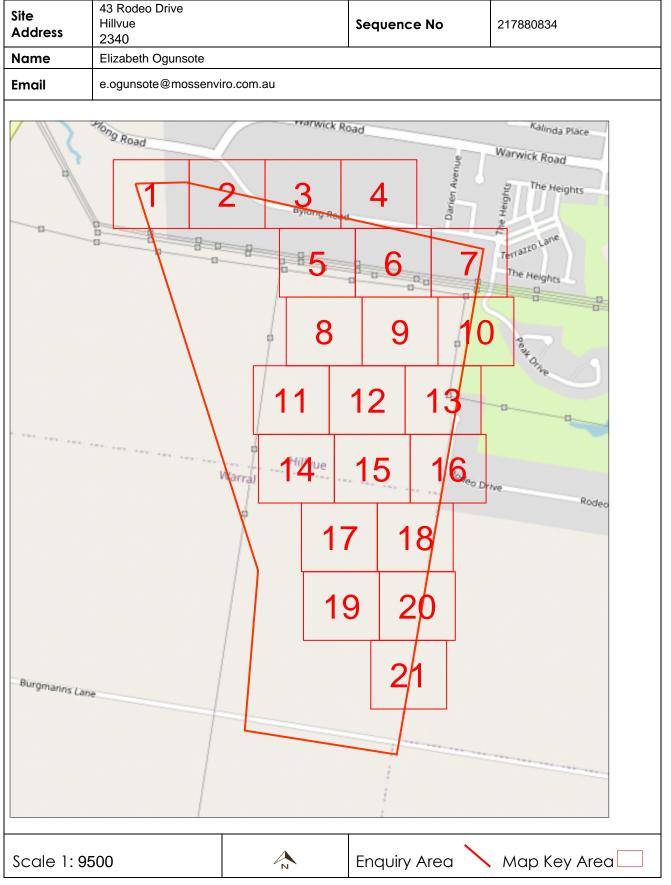
ltem	Rate
Site Watch - Normal Hours	\$143.42 (hr)
Site Watch - After Hours	\$175.06 (hr)
Electronic Locate – Normal Hours	\$143.42 (hr)
Electronic Locate – After Hours	\$175.06 (hr)
Cancellation	2 hrs (where less than 1 business day notice is provided)
Mains Proving	As quoted by APA

Notes:

- All prices are exclusive of GST
- All partial hours will be charged at a full hour rate for the first hour, 1hr minimum charge.
- Cancellations must be received 1 business day prior to the booked supervision otherwise a 2hr charge will be incurred.
- Contact us for State specific hours of business.

APA CHANGE NOTIFICATION

The map below may have different symbols to those you are familiar with.

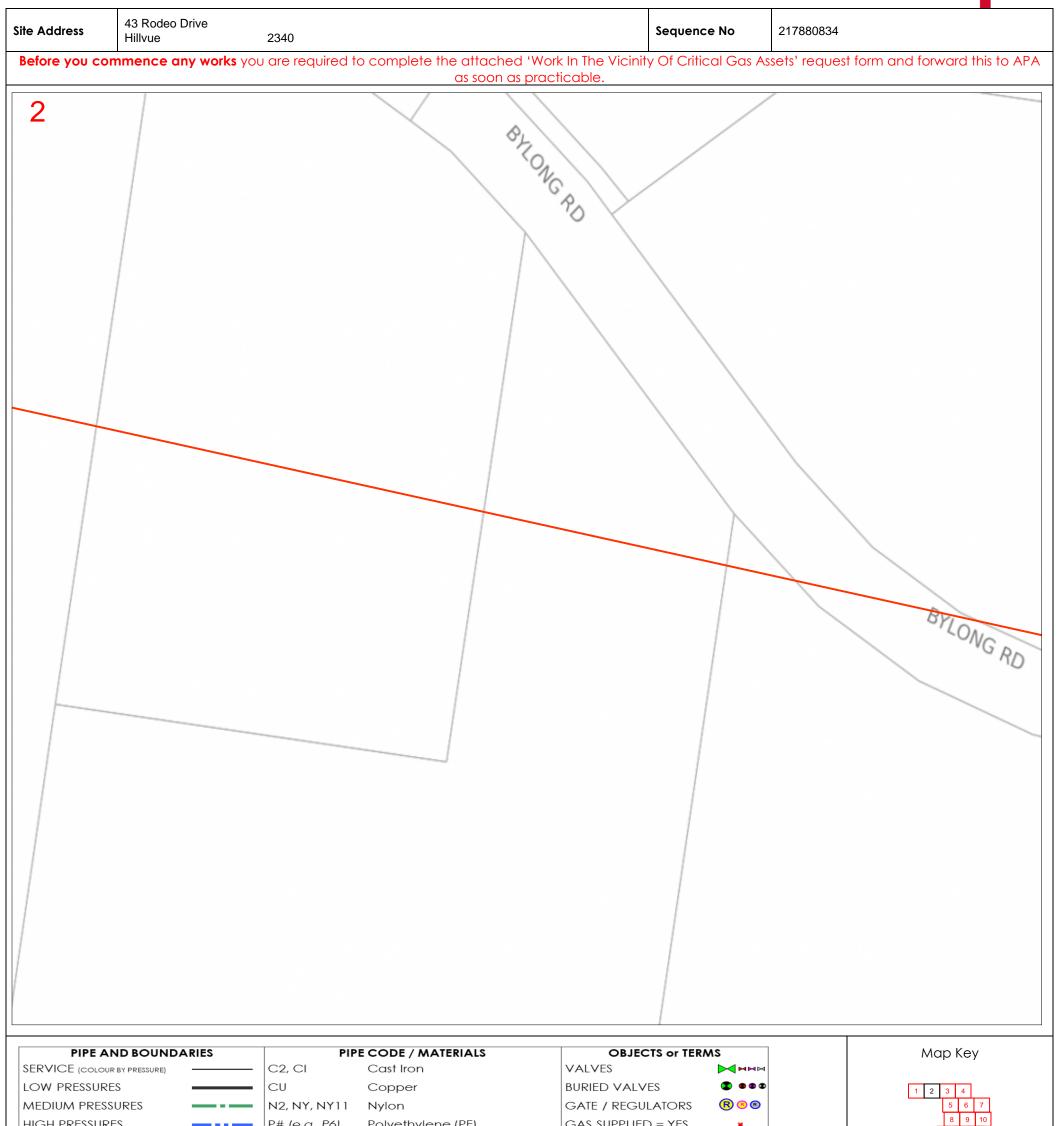

APA recently upgraded the asset mapping software utilised for Dial Before You Dig requests.

To avoid confusion, please carefully review the legend along with the map.

Please direct any questions to <u>DBYDNetworksAPA@apa.com.au</u>

e Address	43 Rodeo Drive Hillvue 2340	Sequence No 217880834	
efore you co	mmence any works you are required to complete the attached 'Work In T as soon as practicab	ne Vicinity Of Critical Gas Assets' request form c e.	ind forward this to AP
1			
PIPE A ERVICE (COLO	ND BOUNDARIES PIPE CODE / MATERIALS UR BY PRESSURE) C2, CI Cast Iron	OBJECTS or TERMS	Мар Кеу

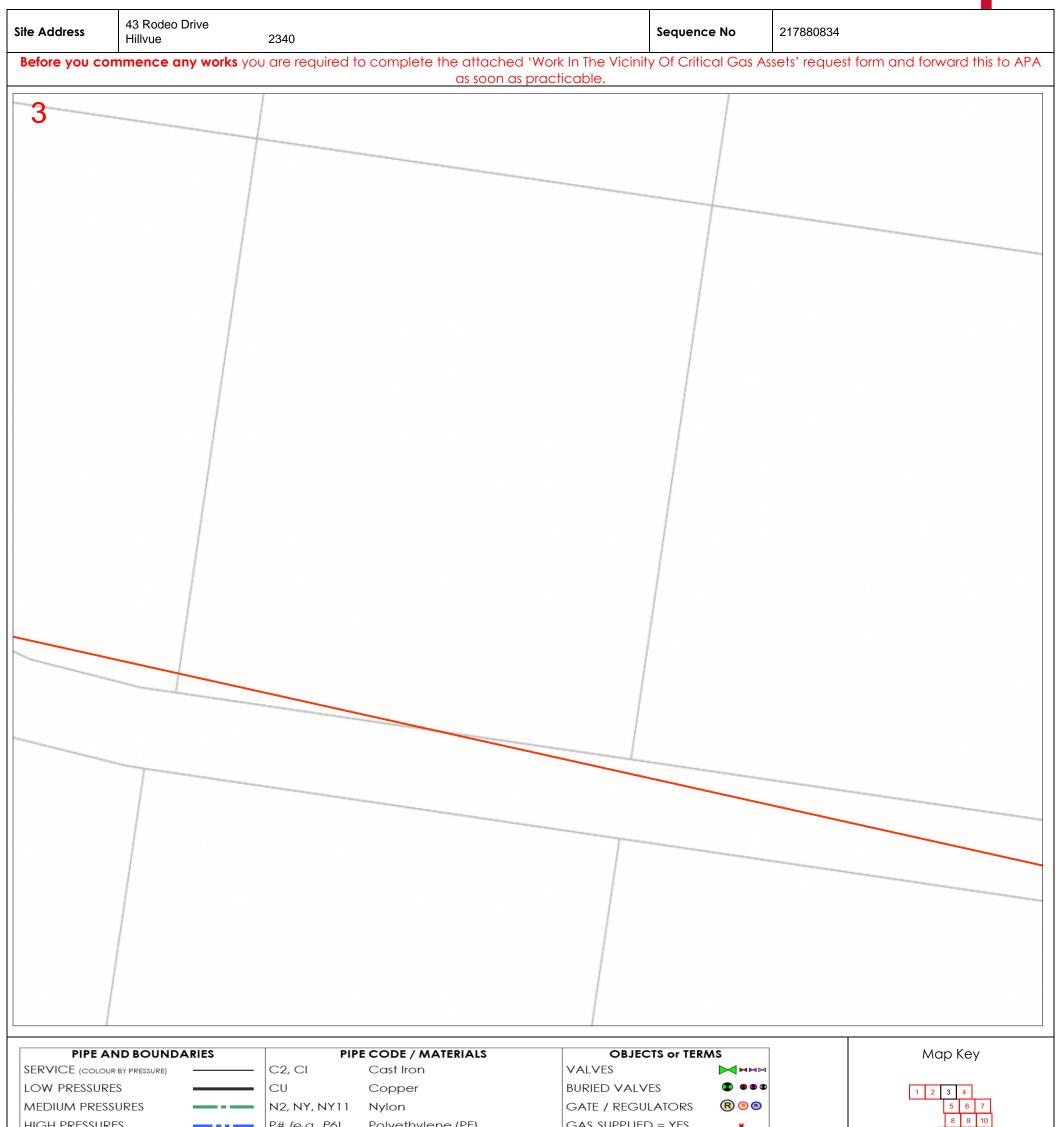
MEDIUM PRESSURES	N2, NY, NY11 Nylon		GATE / REGULATORS	R • R	5 6 7
HIGH PRESSURES	P# (e.g. P6) Polyethyler	ne (PE)	GAS SUPPLIED = YES	*	8 9 10
TRANSMISSION PRESSURES	P6,P7,P9-P12 Medium	Density PE	CP RECTIFIER UNIT	8	11 12 13 14 15 16
PRIORITY MAIN (BEHIND PIPE)	P2,P4,P8 High Dei	nsity PE	CP TEST POINT/ ANODE	🗩 / 🐥	17 18
PROPOSED (COLOUR BY PRESSURE)	ST or S# Steel		SYPHON	S	19 20
	S6# (e.g. S61) Steel Class	600	TRACE WIRE POINT	+	21
ABANDONED	\$3# (e.g. \$33) Steel Class	300	PIPELINE MARKER		
IDLE	W2 or GAL Wrought Ge	alv. Iron	NOT TIED IN	n.t.i. 🚱	
SLEEVE -	W3 or PGAL Poly Coat V	Vrought Galv. Iron	COUPLING & END CAP	or	
CASING / SPLIT (BEHIND PIPE) /	Pipe diameter in millimetres is	shown before nine	DEPTH OF COVER	С	
	. code				
EASEMENT/ JURISDICTION	e.g. 40P6 = 40mm nom	ninal diameter			
EXAMPLES 40P6 in 80C2 40mr	n High Pressure Medium Density Po	lyethylene in an 80mm (Cast Iron Casing		
63\$8 63mr	n Medium Pressure Steel				
Line / Polygon Request	This map is cr	eated in colour and s	shall be printed in colour		
Scale 1:700			0 0.008km		∕ <mark>∧</mark> ×


 Mapping information is provided as AS5488-2013 Quality Level D

 APA Group • PO Box 6014 Halifax Street SA 5000 • Email: DBYDNetworksAPA@apa.com.au • Template: QLD Critical Jan 2022

 Page 5 of 28 • 06/11/2022

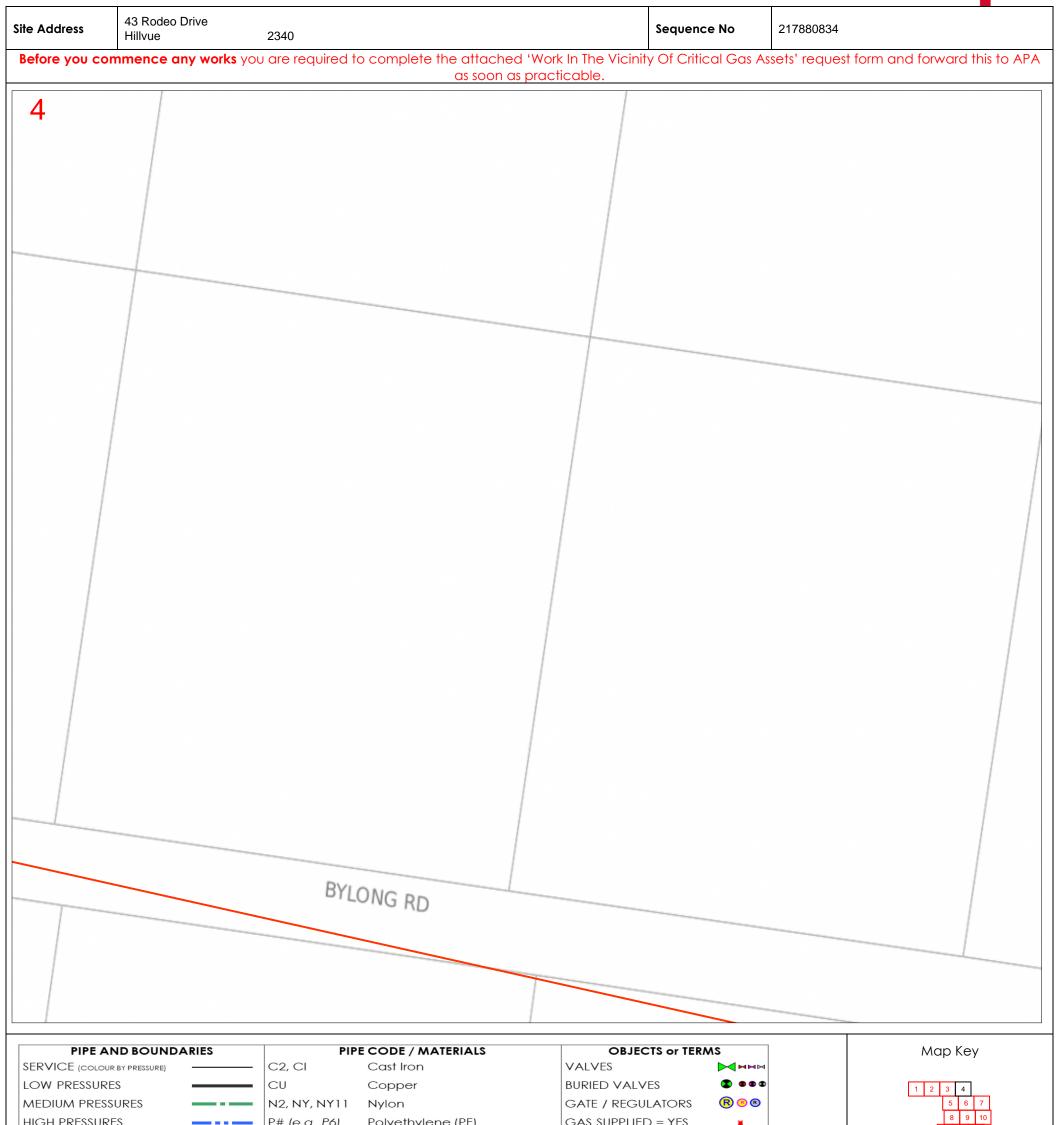
MEDIUM PRESSURES	N2, NY, NY11 Nylon		GATE / REGULATORS	R • R	5 6 7
HIGH PRESSURES	P# (e.g. P6) Polyethyler	ne (PE)	GAS SUPPLIED = YES	*	8 9 10
TRANSMISSION PRESSURES	P6,P7,P9-P12 Medium	Density PE	CP RECTIFIER UNIT	8	11 12 13 14 15 16
PRIORITY MAIN (BEHIND PIPE)	P2,P4,P8 High Der	nsity PE	CP TEST POINT/ ANODE	● / ●	17 18
PROPOSED (COLOUR BY PRESSURE)	ST or S# Steel		SYPHON	S	19 20
	S6# (e.g. S61) Steel Class	600	TRACE WIRE POINT		21
ABANDONED	\$3# (e.g. \$33) Steel Class	300	PIPELINE MARKER		
IDLE	W2 or GAL Wrought Go	alv. Iron	NOT TIED IN	N.T.I. 🕑	
SLEEVE -	W3 or PGAL Poly Coat V	Vrought Galv. Iron	COUPLING & END CAP	or	
CASING / SPLIT (BEHIND PIPE) /	Pipe diameter in millimetres is	shown before nine	DEPTH OF COVER	С	
UNKNOWN	. code				
EASEMENT/ JURISDICTION	e.g. 40P6 = 40mm nom	ninal diameter			
EXAMPLES 40P6 in 80C2 40mr	n High Pressure Medium Density Po	lyethylene in an 80mm (Cast Iron Casing		
63\$8 63mr	n Medium Pressure Steel				
Line / Polygon Request	This map is cre	eated in colour and s	shall be printed in colour		
Scale 1:700			0 0.008km		∧_N


 Mapping information is provided as AS5488-2013 Quality Level D

 APA Group • PO Box 6014 Halifax Street SA 5000 • Email: DBYDNetworksAPA@apa.com.au • Template: QLD Critical Jan 2022

 Page 6 of 28 • 06/11/2022

MEDIUM PRESSURES	N2, NY, NY11 Nylon		GATE / REGULATORS	R 8 8	5 6 7
HIGH PRESSURES	P# (e.g. P6) Polyethyler	ne (PE)	GAS SUPPLIED = YES	•	8 9 10
TRANSMISSION PRESSURES	P6,P7,P9-P12 Medium	Density PE	CP RECTIFIER UNIT	8	14 15 16
PRIORITY MAIN (BEHIND PIPE)	P2,P4,P8 High Dei	nsity PE	CP TEST POINT/ ANODE	🗩 / 🐥	17 18
	ST or S# Steel		SYPHON	S .	19 20
LPG (colour by pressure)	S6# (e.g. S61) Steel Class	600	TRACE WIRE POINT	•	21
ABANDONED	\$3# (e.g. \$33) Steel Class	300	PIPELINE MARKER	Ф	
IDLE	W2 or GAL Wrought Ge	alv. Iron	NOT TIED IN	N.T.I. 😁	
SLEEVE -	W3 or PGAL Poly Coat V	Vrought Galv. Iron	COUPLING & END CAP	or	
CASING / SPLIT (BEHIND PIPE) /	Pipe diameter in millimetres is	shown before nine	DEPTH OF COVER	С	
UNKNOWN	code				
EASEMENT/ JURISDICTION	e.g. 40P6 = 40mm nom	ninal diameter			
EXAMPLES 40P6 in 80C2 40mr	n High Pressure Medium Density Po	lyethylene in an 80mm (Cast Iron Casing		
63\$8 63mr	n Medium Pressure Steel				
Line / Polygon Request	This map is cro	eated in colour and s	shall be printed in colour		
Scale 1:700			0 0.008km		A N


 Mapping information is provided as AS5488-2013 Quality Level D

 APA Group • PO Box 6014 Halifax Street SA 5000 • Email: DBYDNetworksAPA@apa.com.au • Template: QLD Critical Jan 2022

 Page 7 of 28 • 06/11/2022

MEDIUM PRESSURES	N2, NY, NY11 Nylon		GATE / REGULATORS	R 🖲 🕲	5 6 7
HIGH PRESSURES	P# (e.g. P6) Polyethyler	ne (PE)	GAS SUPPLIED = YES	*	8 9 10 11 12 13
TRANSMISSION PRESSURES	P6,P7,P9-P12 Medium	Density PE	CP RECTIFIER UNIT	R upr	14 15 16
PRIORITY MAIN (BEHIND PIPE)	P2,P4,P8 High De	nsity PE	CP TEST POINT/ ANODE	J ● / A	17 18
PROPOSED (COLOUR BY PRESSURE)	ST or S# Steel		syphon	S	17 18 19 20 21
	S6# (e.g. S61) Steel Class	600	TRACE WIRE POINT	+	21
ABANDONED	\$3# (e.g. \$33) Steel Class	300	PIPELINE MARKER		
IDLE	W2 or GAL Wrought G	alv. Iron	NOT TIED IN	N.T.I. 🔁	
SLEEVE -	W3 or PGAL Poly Coat V	Wrought Galv. Iron	COUPLING & END CAP	or	
CASING / SPLIT (BEHIND PIPE)	Pipe diameter in millimetres is	s shown before nine	DEPTH OF COVER	С	
UNKNOWN	code				
EASEMENT/ JURISDICTION	e.g. 40P6 = 40mm nom	ninal diameter			
EXAMPLES 40P6 in 80C2 40mr	m High Pressure Medium Density Po	olyethylene in an 80mm (Cast Iron Casing		
63\$8 63mr	n Medium Pressure Steel				
Line / Polygon Request	This map is cr	eated in colour and s	shall be printed in colour		
Scale 1:700			0 0.008km		A N

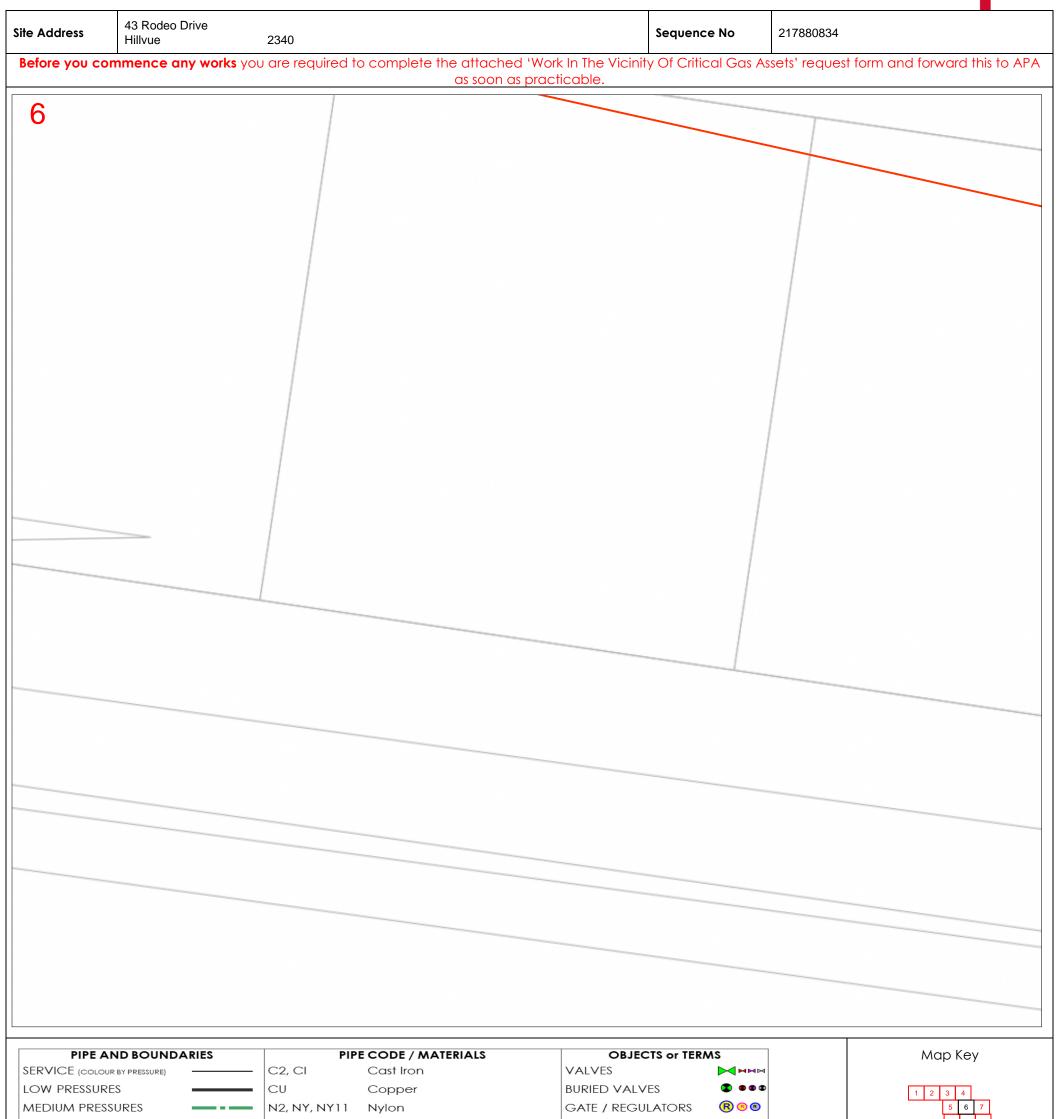
 Mapping information is provided as AS5488-2013 Quality Level D

 APA Group • PO Box 6014 Halifax Street SA 5000 • Email: DBYDNetworksAPA@apa.com.au • Template: QLD Critical Jan 2022

 Page 8 of 28 • 06/11/2022

Site Address	43 Rodeo Drive Hillvue	2340			Sequence No	217880834	
Before you con			complete the attached 'Work	In The Vicinit	y Of Critical Gas As	l sets' request form and forward this to AF	۶A
			as soon as pract	ICADIE.		1	
5							
SERVICE (COLOUR		PIPE C2, CI	CODE / MATERIALS	OBJEC VALVES	CTS or TERMS	Мар Кеу	
LOW PRESSURES		CU N2, NY, NY11	Copper Nylon	BURIED VALV GATE / REGUI		1 2 3 4 5 6 7	

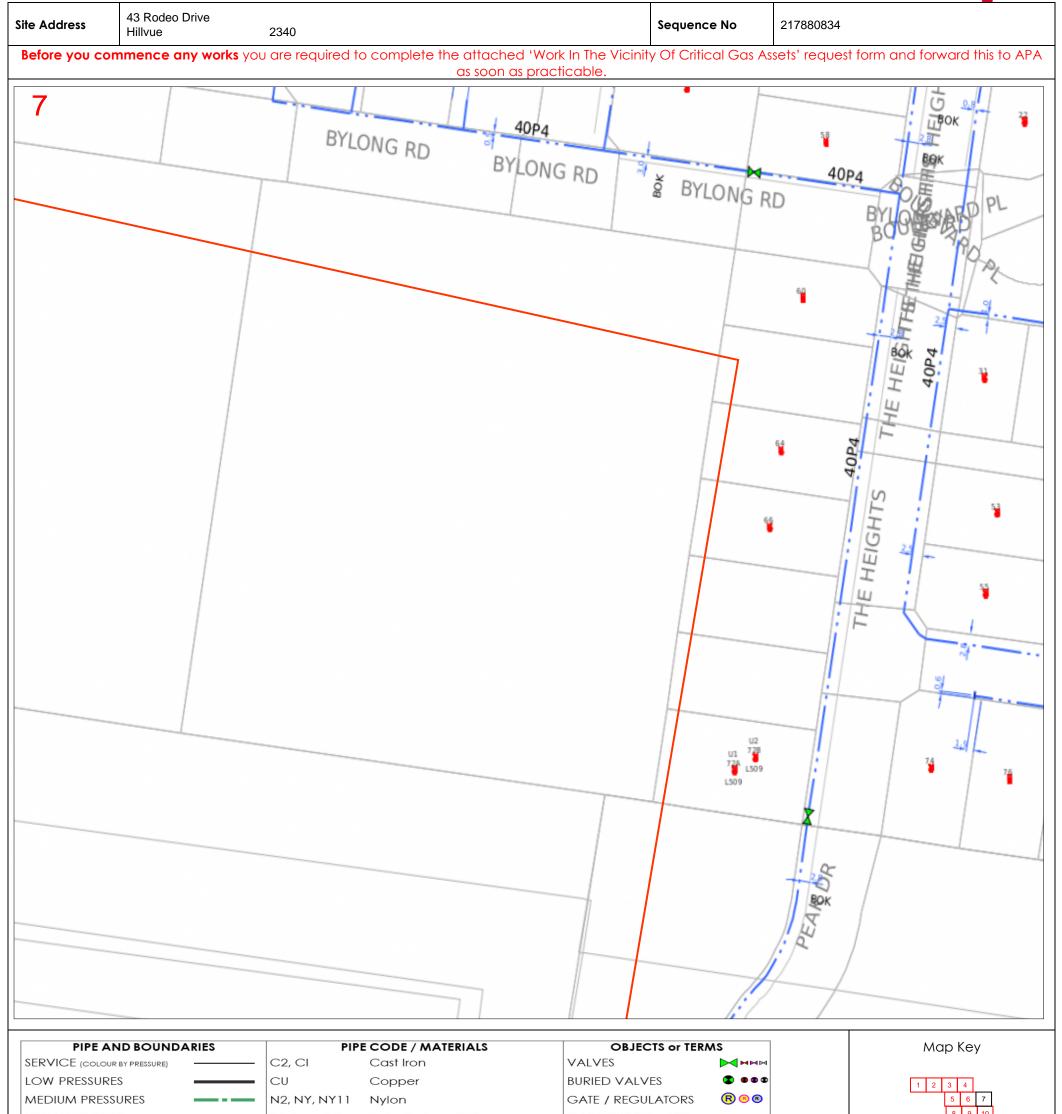
MEDIUM PRESSURES	N2, NY, NY11 Nylon		GATE / REGULATORS	R 🖲 🖲	5 6 7
HIGH PRESSURES	P# (e.g. P6) Polyethyler	ne (PE)	GAS SUPPLIED = YES	•	8 9 10
TRANSMISSION PRESSURES	P6,P7,P9-P12 Medium	Density PE	CP RECTIFIER UNIT	8	11 12 13 14 15 16
PRIORITY MAIN (BEHIND PIPE)	P2,P4,P8 High Dei	nsity PE	CP TEST POINT/ ANODE	● / ●	17 18
PROPOSED (COLOUR BY PRESSURE)	ST or S# Steel		syphon	S	19 20
LPG (colour by pressure)	S6# (e.g. S61) Steel Class	600	TRACE WIRE POINT	•	21
ABANDONED	\$3# (e.g. \$33) Steel Class	300	PIPELINE MARKER		
IDLE	W2 or GAL Wrought Ge	alv. Iron	NOT TIED IN	n.t.i. 🕑	
SLEEVE -	W3 or PGAL Poly Coat V	Vrought Galv. Iron	COUPLING & END CAP	or 📘	
CASING / SPLIT (BEHIND PIPE) /	Pipe diameter in millimetres is	shown before nine	DEPTH OF COVER	С	
	. code				
EASEMENT/ JURISDICTION	e.g. 40P6 = 40mm nom	ninal diameter			
EXAMPLES 40P6 in 80C2 40mr	n High Pressure Medium Density Po	lyethylene in an 80mm (Cast Iron Casing		
63\$8 63mr	n Medium Pressure Steel				
Line / Polygon Request	This map is cr	eated in colour and s	shall be printed in colour		
Scale 1:700			0 0.008km		∕ <mark>∧</mark> ×


 Mapping information is provided as AS5488-2013 Quality Level D

 APA Group • PO Box 6014 Halifax Street SA 5000 • Email: DBYDNetworksAPA@apa.com.au • Template: QLD Critical Jan 2022

 Page 9 of 28 • 06/11/2022

MEDIUM PRESSURES	N2, NY, NY11 Nylon		GATE / REGULATORS	R 3 8	5 6 7
HIGH PRESSURES	P# (e.g. P6) Polyethyler	ne (PE)	GAS SUPPLIED = YES	•	8 9 10
TRANSMISSION PRESSURES	P6,P7,P9-P12 Medium	Density PE	CP RECTIFIER UNIT	8	11 12 13 14 15 16
PRIORITY MAIN (BEHIND PIPE)	P2,P4,P8 High Dei	nsity PE	CP TEST POINT/ ANODE	🗩 / 🐥	17 18
PROPOSED (COLOUR BY PRESSURE)	ST or S# Steel		SYPHON	S	19 20
LPG (colour by pressure)	S6# (e.g. S61) Steel Class	600	TRACE WIRE POINT	+	21
ABANDONED	\$3# (e.g. \$33) Steel Class	300	PIPELINE MARKER		
IDLE	W2 or GAL Wrought Ge	alv. Iron	NOT TIED IN	n.t.i. 🚱	
SLEEVE -	W3 or PGAL Poly Coat V	Vrought Galv. Iron	COUPLING & END CAP	or	
CASING / SPLIT (BEHIND PIPE) /	Pipe diameter in millimetres is shown before pipe code		DEPTH OF COVER	С	
UNKNOWN					
EASEMENT/ JURISDICTION	e.g. 40P6 = 40mm nominal diameter				
EXAMPLES 40P6 in 80C2 40mr	n High Pressure Medium Density Po	lyethylene in an 80mm (Cast Iron Casing		
63\$8 63mr	n Medium Pressure Steel				
Line / Polygon Request	This map is cr	eated in colour and s	shall be printed in colour		
Scale 1:700			0 0.008km		∧ _N


 Mapping information is provided as AS5488-2013 Quality Level D

 APA Group • PO Box 6014 Halifax Street SA 5000 • Email: DBYDNetworksAPA@apa.com.au
 • Template: QLD Critical Jan 2022

 Page 10 of 20 06/11/2022

MEDIUM PRESSURES	N2, NY, NY11 Nylon		GATE / REGULATORS	R 🖲 🖲	5 6 7
HIGH PRESSURES	P# (e.g. P6) Polyethyler	ne (PE)	GAS SUPPLIED = YES		8 9 10
TRANSMISSION PRESSURES	P6,P7,P9-P12 Medium	Density PE	CP RECTIFIER UNIT	R	11 12 13 14 15 16
PRIORITY MAIN (BEHIND PIPE)	P2,P4,P8 High Dei	nsity PE	CP TEST POINT/ ANODE	● / ●	17 18
	ST or S# Steel		syphon	S	19 20
LPG (colour by pressure)	S6# (e.g. S61) Steel Class	600	TRACE WIRE POINT	+	21
ABANDONED	\$3# (e.g. \$33) Steel Class	300	PIPELINE MARKER		
IDLE	W2 or GAL Wrought Ge	alv. Iron	NOT TIED IN	n.t.i. 🚱	
SLEEVE -	W3 or PGAL Poly Coat V	Vrought Galv. Iron	COUPLING & END CAP	or	
CASING / SPLIT (BEHIND PIPE) /	Pipe diameter in millimetres is	shown before nine	DEPTH OF COVER	С	
UNKNOWN	. code				
EASEMENT/ JURISDICTION	e.g. 40P6 = 40mm nom	ninal diameter			
EXAMPLES 40P6 in 80C2 40mr	n High Pressure Medium Density Po				
63\$8 63mr	n Medium Pressure Steel				
Line / Polygon Request	This map is cr	eated in colour and s	shall be printed in colour		
Scale 1:700			0 0.008km		×

 Mapping information is provided as AS5488-2013 Quality Level D

 APA Group • PO Box 6014 Halifax Street SA 5000 • Email: DBYDNetworksAPA@apa.com.au
 • Template: QLD Critical Jan 2022

 Page 11 of 28 06/11/2022

	43 Rodeo Drive						
Site Address	Hillvue	2340			Sequence No	217880834	
Before you cor	mmence any works you	u are required to	o complete the attached 'Wo as soon as prac	ork In The Vicinity	Of Critical Gas As	sets' reques	t form and forward this to APA
8							
PIPE AI		PIP	E CODE / MATERIALS	OBJEC	TS or TERMS		Мар Кеу
		C2, CI	Cast Iron	VALVES			
LOW PRESSURE		CU	Copper	BURIED VALVE			1 2 3 4
		NO NY NY11	Nulon	GATE / REGUL			5 6 7

MEDIUM PRESSURES	N2, NY, NY11 Nylon		GATE / REGULATORS	R ³ R	5 6 7
HIGH PRESSURES	P# (e.g. P6) Polyethyler	ne (PE)	GAS SUPPLIED = YES	•	8 9 10
TRANSMISSION PRESSURES	P6,P7,P9-P12 Medium	Density PE	CP RECTIFIER UNIT	8	11 12 13 14 15 16
PRIORITY MAIN (BEHIND PIPE)	P2,P4,P8 High Dei	nsity PE	CP TEST POINT/ ANODE	🗩 / 🐥	17 18
PROPOSED (COLOUR BY PRESSURE)	ST or S# Steel		syphon	S	19 20
LPG (colour by pressure)	S6# (e.g. S61) Steel Class	600	TRACE WIRE POINT	+	21
ABANDONED	\$3# (e.g. \$33) Steel Class	300	PIPELINE MARKER		
IDLE	W2 or GAL Wrought Ge	alv. Iron	NOT TIED IN	n.t.i. 🚱	
SLEEVE -	W3 or PGAL Poly Coat V	Wrought Galv. Iron	COUPLING & END CAP	or 📕	
CASING / SPLIT (BEHIND PIPE) /	Pipe diameter in millimetres is	s shown before nine	DEPTH OF COVER	С	
UNKNOWN	. code				
EASEMENT/ JURISDICTION	e.g. 40P6 = 40mm nom	ninal diameter			
EXAMPLES 40P6 in 80C2 40mr	n High Pressure Medium Density Po	High Pressure Medium Density Polyethylene in an 80mm Cast Iron Casing			
63\$8 63mr	n Medium Pressure Steel				
Line / Polygon Request	This map is cr	eated in colour and s	shall be printed in colour		
Scale 1:700			0 0.008km		AN N

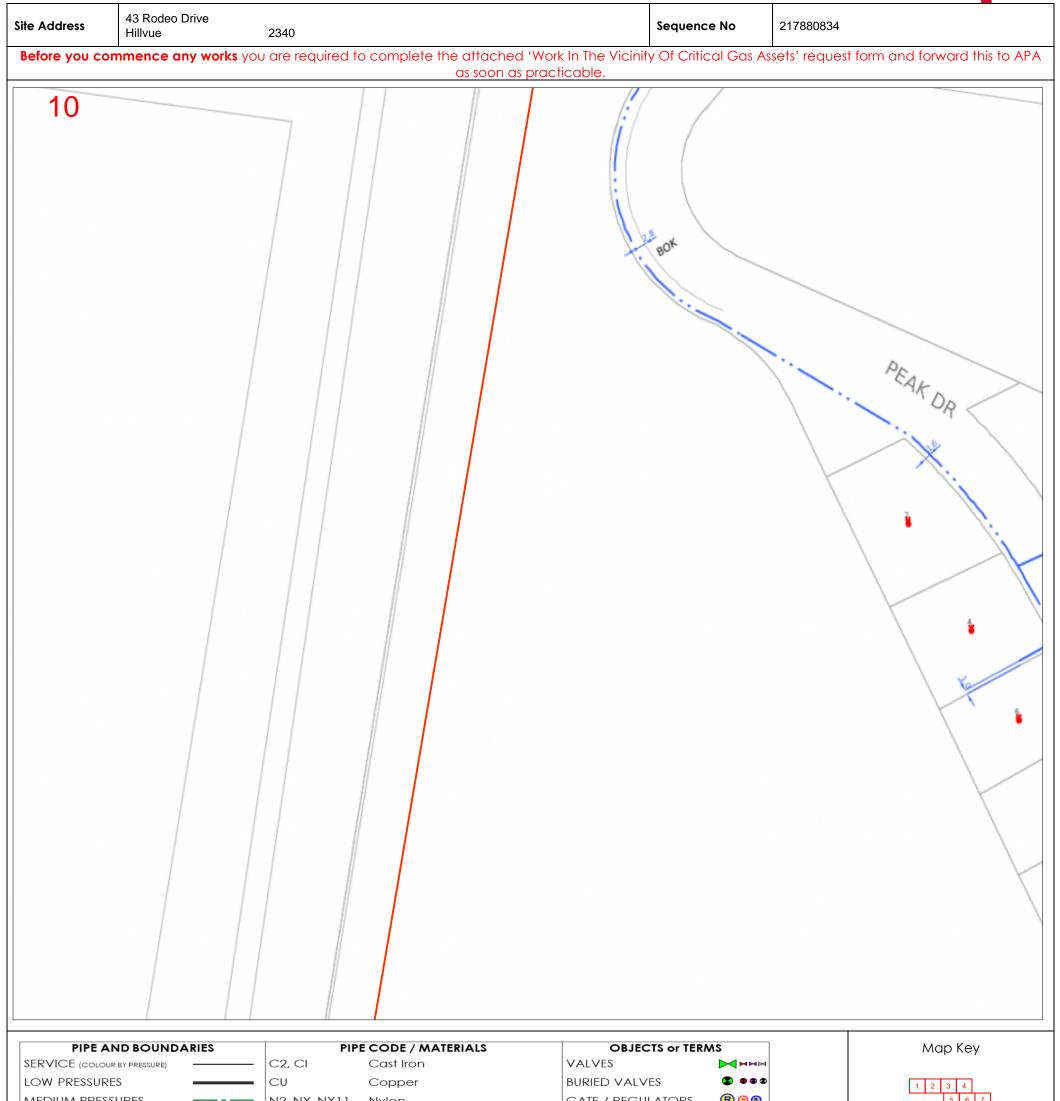
 Mapping information is provided as AS5488-2013 Quality Level D

 APA Group • PO Box 6014 Halifax Street SA 5000 • Email: DBYDNetworksAPA@apa.com.au • Template: QLD Critical Jan 2022

 Page 12 of 28 06/11/2022

e Address 43 Rode Hillvue	o Drive 2340		Sequence No	217880834	
efore you commence	any works you are rec	uired to complete the attached ' as soon as p	Work In The Vicinity Of Critical Gas As practicable.	ssets' request form and forward this t	to AF
9		· · · · · · · · · · · · · · · · · · ·			
0					
PIPE AND BOUN	DARIES	PIPE CODE / MATERIALS	OBJECTS or TERMS	Мар Кеу	
RVICE (COLOUR BY PRESSURE)	C2, CI	Cast Iron	VALVES MMM		
ow pressures	CU N2, NY,	Copper	BURIED VALVES © • • • • • • • • • • • • • • • • • • •	1 2 3 4	

MEDIUM PRESSURES	N2, NY, NY11 Nylon		GATE / REGULATORS	R 8 8	5 6 7
HIGH PRESSURES	P# (e.g. P6) Polyethyler	ne (PE)	GAS SUPPLIED = YES	•	8 9 10
TRANSMISSION PRESSURES	P6,P7,P9-P12 Medium	Density PE	CP RECTIFIER UNIT	8	11 12 13 14 15 16
PRIORITY MAIN (BEHIND PIPE)	P2,P4,P8 High Dei	nsity PE	CP TEST POINT/ ANODE		17 18
PROPOSED (COLOUR BY PRESSURE)	ST or S# Steel		syphon	S	19 20
LPG (COLOUR BY PRESSURE)	S6# (e.g. S61) Steel Class	600	TRACE WIRE POINT	•	21
ABANDONED	\$3# (e.g. \$33) Steel Class	300	PIPELINE MARKER	Ф	
IDLE	W2 or GAL Wrought Ge	alv. Iron	NOT TIED IN	N.T.I. 😁	
SLEEVE -	W3 or PGAL Poly Coat V	Vrought Galv. Iron	COUPLING & END CAP	or 📘	
CASING / SPLIT (BEHIND PIPE) /	Pipe diameter in millimetres is	shown before nine	DEPTH OF COVER	С	
UNKNOWN	. code				
EASEMENT/ JURISDICTION	e.g. 40P6 = 40mm nom	ninal diameter			
EXAMPLES 40P6 in 80C2 40mr	n High Pressure Medium Density Po	lyethylene in an 80mm (Cast Iron Casing		
63\$8 63mr	n Medium Pressure Steel				
Line / Polygon Request	This map is cr	eated in colour and s	shall be printed in colour		
Scale 1:700			0 0.008km		AN


 Mapping information is provided as AS5488-2013 Quality Level D

 APA Group • PO Box 6014 Halifax Street SA 5000 • Email: DBYDNetworksAPA@apa.com.au • Template: QLD Critical Jan 2022

 Page 13 of 29 06/11/2022

MEDIUM PRESSURES	N2, NY, NY11 Nylon		GATE / REGULATORS	R B	5 6 7
HIGH PRESSURES	P# (e.g. P6) Polyethyler	ne (PE)	GAS SUPPLIED = YES	•	8 9 10
TRANSMISSION PRESSURES	P6,P7,P9-P12 Medium	Density PE	CP RECTIFIER UNIT	8	11 12 13 14 15 16
PRIORITY MAIN (BEHIND PIPE)	P2,P4,P8 High Dei	nsity PE	CP TEST POINT/ ANODE	● / ●	17 18
PROPOSED (COLOUR BY PRESSURE)	ST or S# Steel		syphon	S	19 20
LPG (colour by pressure)	S6# (e.g. S61) Steel Class	600	TRACE WIRE POINT	•	21
ABANDONED	\$3# (e.g. \$33) Steel Class	300	PIPELINE MARKER		
IDLE	W2 or GAL Wrought Ge	alv. Iron	NOT TIED IN	n.t.i. 🖸	
SLEEVE -	W3 or PGAL Poly Coat V	Vrought Galv. Iron	COUPLING & END CAP	or 📕	
CASING / SPLIT (BEHIND PIPE) /	Pipe diameter in millimetres is	shown before nine	DEPTH OF COVER	С	
	. code				
EASEMENT/ JURISDICTION	e.g. 40P6 = 40mm nom	ninal diameter			
EXAMPLES 40P6 in 80C2 40mr	n High Pressure Medium Density Po				
63\$8 63mr	n Medium Pressure Steel				
Line / Polygon Request	This map is cr	eated in colour and s	shall be printed in colour		
Scale 1:700			0 0.008km		A _N

 Mapping information is provided as AS5488-2013 Quality Level D

 APA Group • PO Box 6014 Halifax Street SA 5000 • Email: DBYDNetworksAPA@apa.com.au
 • Template: QLD Critical Jan 2022

 Page 14 of 20 06/11/2022

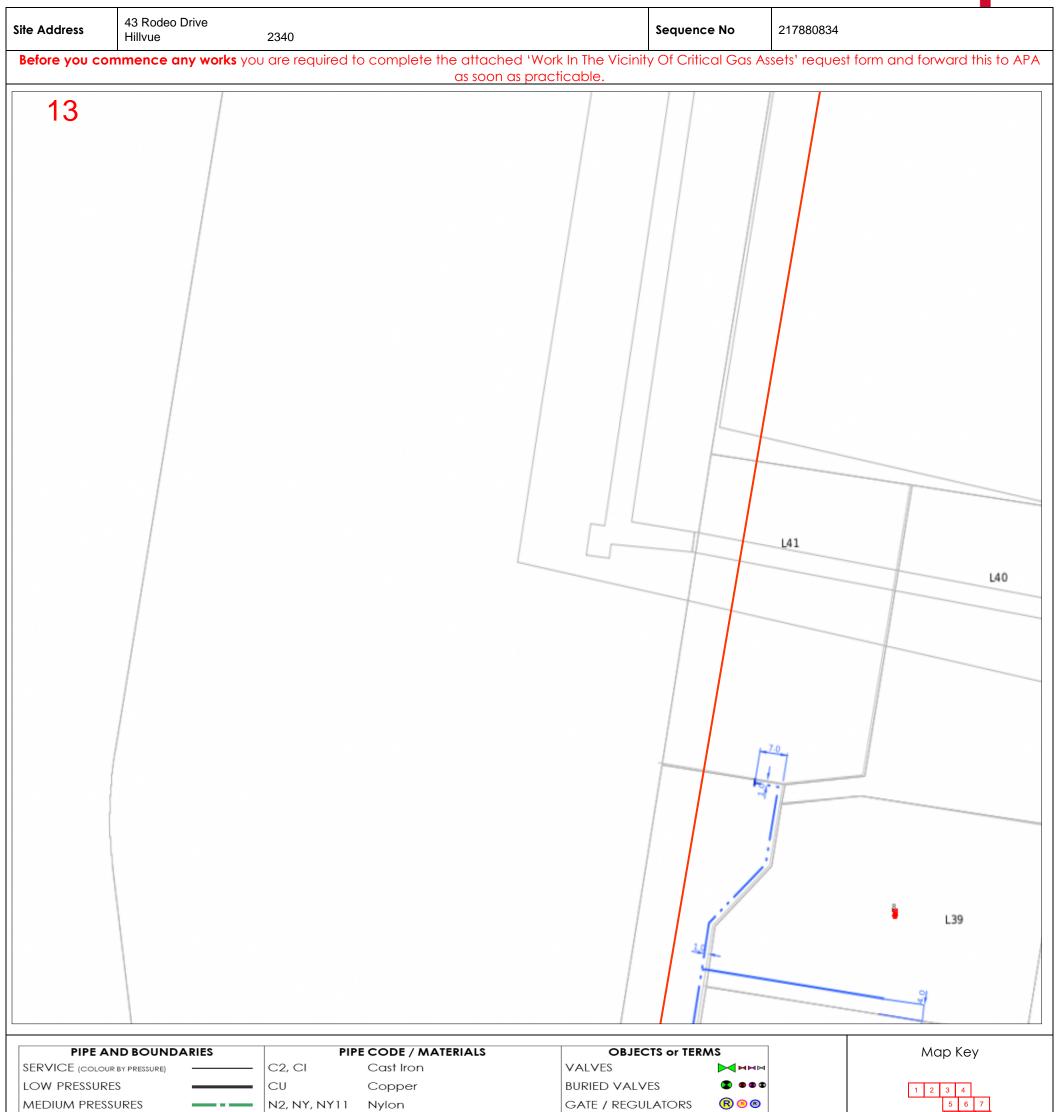
iite Address	43 Rodeo Drive Hillvue	2340	Sequence No	217880834
efore you co	ommence any works	you are required to complete the attached as soon a	d 'Work In The Vicinity Of Critical Gas As s practicable.	sets' request form and forward this to AP
11				
11				
PIPE A	AND BOUNDARIES	PIPE CODE / MATERIALS	OBJECTS or TERMS	Мар Кеу
ERVICE (COLC		- C2, CI Cast Iron	VALVES MMM	
ow pressur		CU Copper	BURIED VALVES	
MEDIUM PRES	SSURES	N2, NY, NY11 Nylon	GATE / REGULATORS 🛛 🔞 🚳	5 6 7

MEDIUM PRESSURES	N2, NY, NY11 Nylon		GATE / REGULATORS	R 3 8	567
HIGH PRESSURES	P# (e.g. P6) Polyethyler	ne (PE)	GAS SUPPLIED = YES	•	8 9 10
TRANSMISSION PRESSURES	P6,P7,P9-P12 Medium	Density PE	CP RECTIFIER UNIT	8	11 12 13 14 15 16
PRIORITY MAIN (BEHIND PIPE)	P2,P4,P8 High Dei	nsity PE	CP TEST POINT/ ANODE	🗩 / 🐥	17 18
PROPOSED (COLOUR BY PRESSURE)	ST or S# Steel		SYPHON	S	19 20
LPG (colour by pressure)	S6# (e.g. S61) Steel Class	600	TRACE WIRE POINT	+	21
ABANDONED	\$3# (e.g. \$33) Steel Class	300	PIPELINE MARKER		
IDLE	W2 or GAL Wrought Ge	alv. Iron	NOT TIED IN	n.t.i. 🚱	
SLEEVE -	W3 or PGAL Poly Coat V	Vrought Galv. Iron	COUPLING & END CAP	or	
CASING / SPLIT (BEHIND PIPE) /	Pipe diameter in millimetres is	shown before nine	DEPTH OF COVER	С	
UNKNOWN	. code				
EASEMENT/ JURISDICTION	e.g. 40P6 = 40mm nom	ninal diameter			
EXAMPLES 40P6 in 80C2 40mr	n High Pressure Medium Density Po				
63\$8 63mr	n Medium Pressure Steel				
Line / Polygon Request	This map is cr	eated in colour and s	shall be printed in colour		
Scale 1:700			0 0.008km		A _N

APA Group does not guarantee the accuracy or completeness of the map and does not make any warranty about the data. APA Group is not under any liability to the user for any loss or damage (including consequential loss or damage) which the user may suffer resulting from the use of this map.

Mapping information is provided as AS5488-2013 Quality Level D APA Group • PO Box 6014 Halifax Street SA 5000 • Email: DBYDNetworksAPA@apa.com.au • Template: QLD Critical Jan 2022 Page 15 of 28 06/11/2022

te Address	43 Rodeo Drive Hillvue	2340			Sequence No	217880834	
Before you co			o complete the attache as soon c	d 'Work In The Vicinity Is practicable.	Of Critical Gas A	ssets' request f	orm and forward this to
12							
12							
	ND BOUNDARIES		E CODE / MATERIALS		TS or TERMS	ן ך	Мар Кеу
ERVICE (coloi OW PRESSUR		C2, CI CU	Cast Iron	VALVES BURIED VALVE			
			Copper		=s 🔹 🔹 🔹 🔹		


LOW PRESSURES	CU Copper	1	BURIED VALVES		1 2 3 4
MEDIUM PRESSURES	N2, NY, NY11 Nylon		gate / regulators	R s r	5 6 7
HIGH PRESSURES	P# (e.g. P6) Polyethyler	ne (PE)	gas supplied = yes	*	
TRANSMISSION PRESSURES	P6,P7,P9-P12 Medium	Density PE	CP RECTIFIER UNIT	8	11 12 13 14 15 16
PRIORITY MAIN (BEHIND PIPE)	P2,P4,P8 High De	ensity PE	CP TEST POINT/ ANODE	● / ●	
PROPOSED (COLOUR BY PRESSURE)	ST or S# Steel	5	syphon	S	17 18 19 20 21
	S6# (e.g. S61) Steel Class	600	TRACE WIRE POINT	•	21
ABANDONED	\$3# (e.g. \$33) Steel Class	300	PIPELINE MARKER		
IDLE	W2 or GAL Wrought G	alv. Iron	NOT TIED IN	n.t.i. 😋	
SLEEVE -	W3 or PGAL Poly Coat V	Wrought Galv. Iron	COUPLING & END CAP	or	
CASING / SPLIT (BEHIND PIPE)	Pipe diameter in millimetres is	s shown before pipe	DEPTH OF COVER	С	
UNKNOWN	code				
EASEMENT/ JURISDICTION	e.g. 40P6 = 40mm nom	ninal diameter			
EXAMPLES 40P6 in 80C2 40n	nm High Pressure Medium Density Pc	olyethylene in an 80mm Co	ast Iron Casing		
63\$8 63r	nm Medium Pressure Steel				
Line / Polygon Request	This map is cr	reated in colour and sh	nall be printed in colour		
Scale 1:700			0 0.008km		A

APA Group does not guarantee the accuracy or completeness of the map and does not make any warranty about the data. APA Group is not under any liability to the user for any loss or damage (including consequential loss or damage) which the user may suffer resulting from the use of this map.

Mapping information is provided as AS5488-2013 Quality Level D APA Group • PO Box 6014 Halifax Street SA 5000 • Email: DBYDNetworksAPA@apa.com.au • Template: QLD Critical Jan 2022 Page 16 of 28 06/11/2022

MEDIUM PRESSURES	N2, NY, NY11 Nylon		GATE / REGULATORS	R 🖲 🛛	5 6 7
HIGH PRESSURES	P# (e.g. P6) Polyethyler	ne (PE)	GAS SUPPLIED = YES	*	
TRANSMISSION PRESSURES	P6,P7,P9-P12 Medium	Density PE	CP RECTIFIER UNIT	8	11 12 13 14 15 16
PRIORITY MAIN (BEHIND PIPE)	P2,P4,P8 High Der	nsity PE	CP TEST POINT/ ANODE	. ■ / ●	17 18
	ST or S# Steel		SYPHON	S	19 20
LPG (COLOUR BY PRESSURE)	S6# (e.g. S61) Steel Class	600	TRACE WIRE POINT	•	21
ABANDONED	\$3# (e.g. \$33) Steel Class	300	PIPELINE MARKER	Ф	
IDLE	W2 or GAL Wrought Go	alv. Iron	NOT TIED IN	N.T.I. 🕑	
SLEEVE -	W3 or PGAL Poly Coat V	Vrought Galv. Iron	COUPLING & END CAP	or	
CASING / SPLIT (BEHIND PIPE)	Pipe diameter in millimetres is	shown before nine	DEPTH OF COVER	С	
UNKNOWN	code				
EASEMENT/ JURISDICTION	e.g. 40P6 = 40mm nom	inal diameter			
EXAMPLES 40P6 in 80C2 40mm	n High Pressure Medium Density Po				
<u>63\$8</u> 63mr	n Medium Pressure Steel				
Line / Polygon Request	This map is cre	eated in colour and s	shall be printed in colour		
Scale 1:700			0 0.008km		AN N

 Mapping information is provided as AS5488-2013 Quality Level D

 APA Group • PO Box 6014 Halifax Street SA 5000 • Email: DBYDNetworksAPA@apa.com.au
 • Template: QLD Critical Jan 2022

 Page 17 of 29 06/11/2022

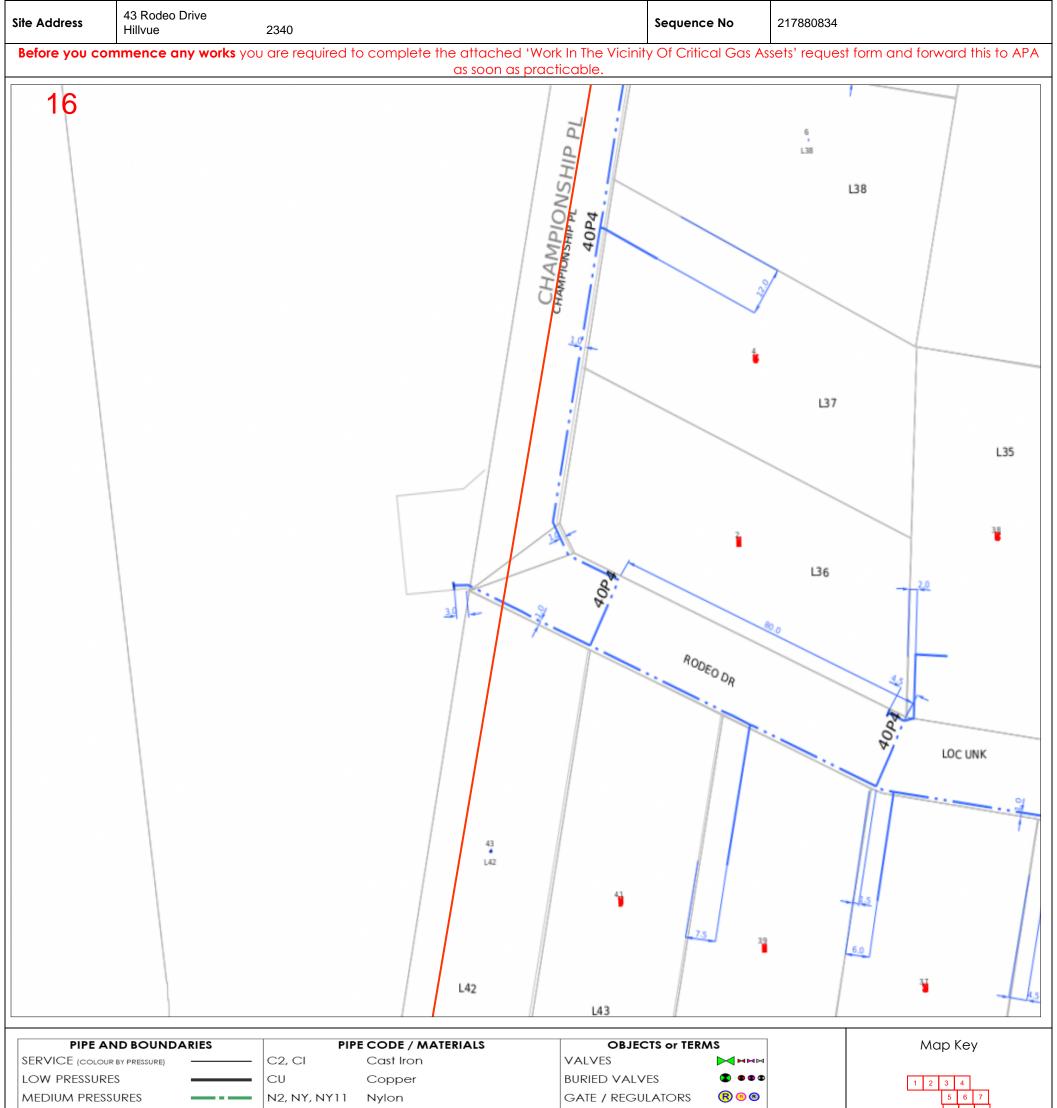
e Address	43 Rodeo Drive Hillvue	2340			Sequence No	217880834	
efore you cc			to complete the atto	ached 'Work In The V oon as practicable.	Vicinity Of Critical Gas A	Assets' request form	m and forward this to A
1 /							
14							
							Man Kay
PIPE A ERVICE (COLOL			PE CODE / MATERIALS Cast Iron	, VALVES		4	Мар Кеу

LOW PRESSURES	CU Copper	E	BURIED VALVES		1 2 3 4
MEDIUM PRESSURES	N2, NY, NY11 Nylon	C	GATE / REGULATORS	R s r	5 6 7
HIGH PRESSURES	P# (e.g. P6) Polyethyler	ne (PE)	gas supplied = yes	*	8 9 10
TRANSMISSION PRESSURES	P6,P7,P9-P12 Medium	Density PE	CP RECTIFIER UNIT	8	11 12 13 14 15 16
PRIORITY MAIN (BEHIND PIPE)	P2,P4,P8 High De	nsity PE C	CP TEST POINT/ ANODE	● / ●	
PROPOSED (COLOUR BY PRESSURE)	ST or S# Steel	S	SYPHON	S	17 18 19 20 21
	S6# (e.g. S61) Steel Class	600 T	RACE WIRE POINT	•	21
ABANDONED	\$3# (e.g. \$33) Steel Class	300 F	PIPELINE MARKER		
IDLE	W2 or GAL Wrought G	alv. Iron 🛛 🛛 🕅	NOT TIED IN	n.t.i. 😋	
SLEEVE -	W3 or PGAL Poly Coat V	Wrought Galv. Iron	COUPLING & END CAP	or	
CASING / SPLIT (BEHIND PIPE)	Pipe diameter in millimetres is	s shown before pipe	DEPTH OF COVER	С	
	code				
EASEMENT/ JURISDICTION	e.g. 40P6 = 40mm nom	ninal diameter			
EXAMPLES 40P6 in 80C2 40m	m High Pressure Medium Density Pc	lyethylene in an 80mm Cc	ast Iron Casing		
63\$8 63m	m Medium Pressure Steel				
Line / Polygon Request	This map is cr	eated in colour and she	all be printed in colour		
Scale 1:700			0 0.008km		A N

APA Group does not guarantee the accuracy or completeness of the map and does not make any warranty about the data. APA Group is not under any liability to the user for any loss or damage (including consequential loss or damage) which the user may suffer resulting from the use of this map.

Mapping information is provided as AS5488-2013 Quality Level D APA Group • PO Box 6014 Halifax Street SA 5000 • Email: DBYDNetworksAPA@apa.com.au • Template: QLD Critical Jan 2022 Page 18 of 28 06/11/2022

te Address	43 Rodeo Drive Hillvue	2340		:	Sequence No	217880834	
efore you cor	mmence any works	you are required to	complete the attachec as soon as	I 'Work In The Vicinity practicable.	Of Critical Gas As	ssets' request form	and forward this to Af
15				•			
15							
			CODE / MATERIALS		s or TERMS		Мар Кеу
ERVICE (colour OW PRESSURE			Cast Iron	VALVES			
C VAL DECCLIDE	-5	– CU (Copper	BURIED VALVES	5 🔹 🔹 👁 👁		1 2 3 4


MEDIUM PRESSURES	N2, NY, NY11 Nylon		GATE / REGULATORS	R • R	5 6 7
HIGH PRESSURES	P# (e.g. P6) Polyethyler	ne (PE)	GAS SUPPLIED = YES	*	8 9 10 11 12 13
TRANSMISSION PRESSURES	P6,P7,P9-P12 Medium	Density PE	CP RECTIFIER UNIT	R	11 12 13 14 15 16
PRIORITY MAIN (BEHIND PIPE)	P2,P4,P8 High De	nsity PE	CP TEST POINT/ ANODE	🗩 / 🐥	17 18
	ST or S# Steel		SYPHON	S	19 20
	S6# (e.g. S61) Steel Class	600	TRACE WIRE POINT	+	21
ABANDONED	\$3# (e.g. \$33) Steel Class	300	PIPELINE MARKER		
IDLE	W2 or GAL Wrought G	alv. Iron	NOT TIED IN	n.t.i. 😁	
SLEEVE -	W3 or PGAL Poly Coat V	Wrought Galv. Iron	COUPLING & END CAP	or	
CASING / SPLIT (BEHIND PIPE)	Pipe diameter in millimetres is	s shown before nine	DEPTH OF COVER	С	
UNKNOWN	. code				
EASEMENT/ JURISDICTION	e.g. 40P6 = 40mm nom	ninal diameter			
EXAMPLES 40P6 in 80C2 40mm	n High Pressure Medium Density Po	olyethylene in an 80mm (Cast Iron Casing		
63\$8 63mm	n Medium Pressure Steel				
Line / Polygon Request	This map is cr	eated in colour and s	shall be printed in colour		
Scale 1:700			0 0.008km		∕ <mark>∧</mark> ×

APA Group does not guarantee the accuracy or completeness of the map and does not make any warranty about the data. APA Group is not under any liability to the user for any loss or damage (including consequential loss or damage) which the user may suffer resulting from the use of this map.

Mapping information is provided as AS5488-2013 Quality Level D APA Group • PO Box 6014 Halifax Street SA 5000 • Email: DBYDNetworksAPA@apa.com.au • Template: QLD Critical Jan 2022 Page 19 of 28 06/11/2022

MEDIUM PRESSURES	N2, NY, NY11 Nylon		GATE / REGULATORS	R • R	5 6 7
HIGH PRESSURES	P# (e.g. P6) Polyethyler	ne (PE)	GAS SUPPLIED = YES	*	8 9 10
TRANSMISSION PRESSURES	P6,P7,P9-P12 Medium	Density PE	CP RECTIFIER UNIT	R	11 12 13 14 15 16
PRIORITY MAIN (BEHIND PIPE)	P2,P4,P8 High Der	nsity PE	CP TEST POINT/ ANODE	● / ●	17 18
PROPOSED (COLOUR BY PRESSURE)	ST or S# Steel		syphon	S	19 20
	S6# (e.g. S61) Steel Class	600	TRACE WIRE POINT	+	21
ABANDONED	\$3# (e.g. \$33) Steel Class	300	PIPELINE MARKER		
IDLE	W2 or GAL Wrought Ge	alv. Iron	NOT TIED IN	n.t.i. 🖸	
SLEEVE -	W3 or PGAL Poly Coat V	Vrought Galv. Iron	COUPLING & END CAP	or	
CASING / SPLIT (BEHIND PIPE) /	Pipe diameter in millimetres is	shown before nine	DEPTH OF COVER	С	
	. code				
EASEMENT/ JURISDICTION	e.g. 40P6 = 40mm nom	inal diameter			
EXAMPLES 40P6 in 80C2 40mr	m High Pressure Medium Density Po	lyethylene in an 80mm (Cast Iron Casing		
63\$8 63mr	n Medium Pressure Steel				
Line / Polygon Request	This map is cre	eated in colour and s	hall be printed in colour		
Scale 1:700			0 0.008km		A N

 Mapping information is provided as AS5488-2013 Quality Level D

 APA Group • PO Box 6014 Halifax Street SA 5000 • Email: DBYDNetworksAPA@apa.com.au
 • Template: QLD Critical Jan 2022

 Page 20 of 20 06/11/2022

e Address	43 Rodeo Drive Hillvue	2340	Sequence No	217880834	
efore you co		ou are required to complete the attached '	Work In The Vicinity Of Critical Gas	Assets' request form	and forward this to AF
17		as soon as p			
17					
PIPE A	ND BOUNDARIES	PIPE CODE / MATERIALS	OBJECTS or TERMS		Мар Кеу
ERVICE (COLO	UR BY PRESSURE)	C2, CI Cast Iron	VALVES	\bowtie	

LOW PRESSURES

CU

Copper

BURIED VALVES

MEDIUM PRESSURES	N2, NY, NY11 Nylon		GATE / REGULATORS	R • B	5 6 7
HIGH PRESSURES	P# (e.g. P6) Polyethyler	ne (PE)	GAS SUPPLIED = YES	*	8 9 10
TRANSMISSION PRESSURES	P6,P7,P9-P12 Medium	Density PE	CP RECTIFIER UNIT	8	11 12 13 14 15 16
PRIORITY MAIN (BEHIND PIPE)	P2,P4,P8 High Dei	nsity PE	CP TEST POINT/ ANODE	. ■ /	17 18 19 20
PROPOSED (COLOUR BY PRESSURE)	ST or S# Steel		syphon	S .	19 20
LPG (colour by pressure)	S6# (e.g. S61) Steel Class	600	TRACE WIRE POINT	•	21
ABANDONED	\$3# (e.g. \$33) Steel Class	300	PIPELINE MARKER		
IDLE	W2 or GAL Wrought Ge	alv. Iron	NOT TIED IN	N.T.I. 🕑	
SLEEVE -	W3 or PGAL Poly Coat V	Vrought Galv. Iron	COUPLING & END CAP	or	
CASING / SPLIT (BEHIND PIPE) /	Pipe diameter in millimetres is	shown before nine	DEPTH OF COVER	С	
UNKNOWN	code				
EASEMENT/ JURISDICTION	e.g. 40P6 = 40mm nom	ninal diameter			
EXAMPLES 40P6 in 80C2 40mr	n High Pressure Medium Density Po	lyethylene in an 80mm (Cast Iron Casing		
63\$8 63mr	n Medium Pressure Steel				
Line / Polygon Request	This map is cr	eated in colour and s	shall be printed in colour		
Scale 1:700			0 0.008km		A N

APA Group does not guarantee the accuracy or completeness of the map and does not make any warranty about the data. APA Group is not under any liability to the user for any loss or damage (including consequential loss or damage) which the user may suffer resulting from the use of this map.

Mapping information is provided as AS5488-2013 Quality Level D APA Group • PO Box 6014 Halifax Street SA 5000 • Email: DBYDNetworksAPA@apa.com.au • Template: QLD Critical Jan 2022 Page 21 of 28 06/11/2022

Site Address	43 Rodeo Drive Hillvue	2340		Sequence No	217880834
Before you co	ommence any works	you are required to com	plete the attached 'Work In The as soon as practicable.	Vicinity Of Critical Gas A	ssets' request form and forward this to APA
18					
PIPE A SERVICE (COLOI LOW PRESSUR		PIPE COD — C2, CI Cast — CU Copp		OBJECTS or TERMS	

MEDIUM PRESSURES	N2, NY, NY11 Nylon		GATE / REGULATORS	R 🖲 R	5 6 7
HIGH PRESSURES	P# (e.g. P6) Polyethyler	ne (PE)	GAS SUPPLIED = YES	•	8 9 10
TRANSMISSION PRESSURES	P6,P7,P9-P12 Medium	Density PE	CP RECTIFIER UNIT	8	11 12 13 14 15 16
PRIORITY MAIN (BEHIND PIPE)	P2,P4,P8 High Dei	nsity PE	CP TEST POINT/ ANODE	🗩 / 🐥	17 18
	ST or S# Steel		syphon	S	19 20
LPG (colour by pressure)	S6# (e.g. S61) Steel Class	600	TRACE WIRE POINT	+	21
ABANDONED	\$3# (e.g. \$33) Steel Class	300	PIPELINE MARKER		
IDLE	W2 or GAL Wrought Ge	alv. Iron	NOT TIED IN	N.T.I. 💬	
SLEEVE -	W3 or PGAL Poly Coat V	Wrought Galv. Iron	COUPLING & END CAP	or	
CASING / SPLIT (BEHIND PIPE) /	Pipe diameter in millimetres is	s shown before nine	DEPTH OF COVER	С	
UNKNOWN	. code				
EASEMENT/ JURISDICTION	e.g. 40P6 = 40mm nom	ninal diameter			
EXAMPLES 40P6 in 80C2 40mr	n High Pressure Medium Density Po	olyethylene in an 80mm (Cast Iron Casing		
63\$8 63mr	n Medium Pressure Steel				
Line / Polygon Request	This map is cr	eated in colour and s	shall be printed in colour		
Scale 1:700			0 0.008km		×

APA Group does not guarantee the accuracy or completeness of the map and does not make any warranty about the data. APA Group is not under any liability to the user for any loss or damage (including consequential loss or damage) which the user may suffer resulting from the use of this map.

Mapping information is provided as AS5488-2013 Quality Level D APA Group • PO Box 6014 Halifax Street SA 5000 • Email: DBYDNetworksAPA@apa.com.au • Template: QLD Critical Jan 2022 Page 22 of 28 06/11/2022

Site Address	43 Rodeo Drive Hillvue	2340			Sequence No	217880834		_
Before you co	ommence any works you	are required to	complete the attached '\ as soon as p	Work In The Vicinity	Of Critical Gas As	sets' request	t form and forward th	nis to APA
19								
13								
								/
								/
PIPE A SERVICE (COLO		PIPE C2, CI	CODE / MATERIALS Cast Iron	OBJEC VALVES	TS or TERMS		Мар Кеу	
LOW PRESSUR		CU	Copper	BURIED VALVE	ES 🔹 👁 👁 👁		1 2 3 4	
		NO NY NY11	N I da a					-

MEDIUM PRESSURES N2, NY, NY11 Nylon GATE / REGULATORS ® • ® HIGH PRESSURES P# (e.g. P6) Polyethylene (PE) GAS SUPPLIED = YES Image: CP RECTIFIER UNIT TRANSMISSION PRESSURES P6,P7,P9-P12 Medium Density PE CP RECTIFIER UNIT Image: CP RECTIFIER UNIT Image: CP TEST POINT/ ANODE Image: CP TEST POINT PE Image: CP TEST POINT PE Image: CP TEST POINT PE Image: CP TE						1 2 3 4
TRANSMISSION PRESSURES P6,P7,P9-P12 Medium Density PE CP RECTIFIER UNIT Image: CP RECTIFIER UNIT PRIORITY MAIN (BEHIND PIPE) P2,P4,P8 High Density PE CP TEST POINT/ ANODE Image: CP RECTIFIER UNIT PROPOSED (COLOUR BY PRESSURE) ST or S# Steel SYPHON Image: CP RECTIFIER UNIT Image: CP RECTIFIER UNIT LPG (COLOUR BY PRESSURE) Sof# (e.g. S61) Steel Class 600 TRACE WIRE POINT Image: CP RECTIFIER UNIT Image:	MEDIUM PRESSURES	N2, NY, NY11 Nylon		gate / regulators	R © B	5 6 7
TRANSMISSION PRESSURES P6,P7,P9-P12 Medium Density PE CP RECTIFIER UNIT Image: CP RECTIFIER UNIT PRIORITY MAIN (BEHIND PIPE) P2,P4,P8 High Density PE CP TEST POINT/ ANODE / mage: CP TEST POINT / mage: CP TEST PO	HIGH PRESSURES	P# (e.g. P6) Polyethyler	ne (PE)	gas supplied = yes	*	8 9 10
PRIORITY MAIN (BEHIND PIPE) P2,P4,P8 High Density PE CP TEST POINT/ ANODE I/A PROPOSED (COLOUR BY PRESSURE) ST or S# Steel SYPHON Si LPG (COLOUR BY PRESSURE) Sof# (e.g. S61) Steel Class 600 TRACE WIRE POINT Image: CP TEST POINT/ ANODE I/A Image: CP TEST POINT	TRANSMISSION PRESSURES	P6,P7,P9-P12 Medium	n Density PE	CP RECTIFIER UNIT	R	
LPG (colour BY PRESSURE) Só# (e.g. Só1) Steel Class 600 TRACE WIRE POINT Image: Colour BY PRESSURE) ABANDONED S3# (e.g. Só1) Steel Class 300 PIPELINE MARKER Image: Colour BY PRESSURE) Image: Colou	PRIORITY MAIN (BEHIND PIPE)	P2,P4,P8 High De	ensity PE	CP TEST POINT/ ANODE	🗩 / 🐥	17 18
ABANDONED S3# (e.g. S33) Steel Class 300 PIPELINE MARKER IDLE W2 or GAL Wrought Galv. Iron NOT TIED IN N.T.I. (*) SLEEVE W3 or PGAL Poly Coat Wrought Galv. Iron COUPLING & END CAP or (*) CASING / SPLIT (BEHIND PIPE) //// Pipe diameter in millimetres is shown before pipe DEPTH OF COVER C	PROPOSED (colour by pressure)	ST or S# Steel		syphon	S	19 20
IDLE W2 or GAL Wrought Galv. Iron NOT TIED IN N.T.I. @ SLEEVE W3 or PGAL Poly Coat Wrought Galv. Iron COUPLING & END CAP or I UNKNOWN Pipe diameter in millimetres is shown before pipe DEPTH OF COVER C		S6# (e.g. S61) Steel Class	600	TRACE WIRE POINT	•	21
SLEEVE W3 or PGAL Poly Coat Wrought Galv. Iron COUPLING & END CAP or CASING / SPLIT (BEHIND PIPE) Image: Code Pipe diameter in millimetres is shown before pipe COUPLING & END CAP or UNKNOWN Image: Code Code Code Code Code	ABANDONED	\$3# (e.g. \$33) Steel Class	300	PIPELINE MARKER	ф	
CASING / SPLIT (BEHIND PIPE) / Pipe diameter in millimetres is shown before pipe UNKNOWN Pipe diameter in millimetres is shown before pipe code e g. 40P6 = 40mm pominal diameter	IDLE	W2 or GAL Wrought G	alv. Iron	NOT TIED IN	n.t.i. 😁	
UNKNOWN Pipe diameter in millimetres is shown before pipe e a. 40P6 = 40mm pominal diameter	SLEEVE -	W3 or PGAL Poly Coat V	Wrought Galv. Iron	COUPLING & END CAP	or	
		code	is shown before pipe	DEPTH OF COVER	С	
	Line / Polygon Request	This map is cr	reated in colour and s	hall be printed in colour		
Line / Polygon Request This map is created in colour and shall be printed in colour	Scale 1:700			0 0.008km		

 Mapping information is provided as AS5488-2013 Quality Level D

 APA Group • PO Box 6014 Halifax Street SA 5000 • Email: DBYDNetworksAPA@apa.com.au
 • Template: QLD Critical Jan 2022

 Page 23 of 28 06/11/2022

	43 Rodeo Drive Hillvue	2340	Sequence No	217880834
efore you co		u are required to complete the attached 'We		sets' request form and forward this to Al
	/	as soon as pra		
20	/			
	A			
	17			
	/ /			
	- /			
/	/			
/	/			
/	/			
/	/			
/	/			
/				
/				
/				
/				
/				
	ND BOUNDARIES	PIPE CODE / MATERIALS	OBJECTS or TERMS	Мар Кеу
ERVICE (COLOU	R BY PRESSURE)	C2, CI Cast Iron	VALVES MMM	Мар Кеу
ERVICE (colou OW PRESSURI	r by pressure) ————————————————————————————————————	C2, CI Cast Iron CU Copper	VALVES BURIED VALVES	Map Key
ERVICE (colou OW PRESSURI 1EDIUM PRESS	r by pressure)	C2, CI Cast Iron CU Copper N2, NY, NY11 Nylon	VALVES Image: Margin and	
ERVICE (colou OW PRESSUR 1EDIUM PRESS 11GH PRESSUR	R BY PRESSURE) ES ES ES	C2, CICast IronCUCopperN2, NY, NY11NylonP# (e.g. P6)Polyethylene (PE)	VALVESMMMBURIED VALVESImage: Image: Image	1 2 3 4 5 6 7 8 9 10 11 12 13
ERVICE (colou OW PRESSUR) MEDIUM PRESS NIGH PRESSUR RANSMISSION	R BY PRESSURE) ES SURES ES V PRESSURES	C2, CICast IronCUCopperN2, NY, NY11NylonP# (e.g. P6)Polyethylene (PE)P6,P7,P9-P12Medium Density PE	VALVES Image: Market and the second	1 2 3 4 5 6 7 8 9 10
ERVICE (colou OW PRESSUR MEDIUM PRESS MIGH PRESSUR RANSMISSION RIORITY MAIN	R BY PRESSURE) ES SURES ES V PRESSURES V (BEHIND PIPE)	C2, CICast IronCUCopperN2, NY, NY11NylonP# (e.g. P6)Polyethylene (PE)P6,P7,P9-P12Medium Density PEP2,P4,P8High Density PE	VALVESImageBURIED VALVESImageGATE / REGULATORSImageGAS SUPPLIED = YESImageCP RECTIFIER UNITImageCP TEST POINT/ ANODEImage	1 2 3 4 5 6 7 8 9 10 11 12 13
ERVICE (colou OW PRESSUR MEDIUM PRESS IIGH PRESSUR RANSMISSION RIORITY MAIN ROPOSED (co	R BY PRESSURE) ES SURES ES V PRESSURES V (BEHIND PIPE) CLOUR BY PRESSURE)	C2, CICast IronCUCopperN2, NY, NY11NylonP# (e.g. P6)Polyethylene (PE)P6,P7,P9-P12Medium Density PE	VALVES Image: Market and the second	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
ERVICE (colou OW PRESSUR MEDIUM PRESS IIGH PRESSUR RANSMISSION RIORITY MAIN ROPOSED (co PG (colour by pr	R BY PRESSURE) ES SURES ES V PRESSURES V (BEHIND PIPE) DLOUR BY PRESSURE) ESSURE)	C2, CICast IronCUCopperN2, NY, NY11NylonP# (e.g. P6)Polyethylene (PE)P6,P7,P9-P12Medium Density PEP2,P4,P8High Density PEST or S#Steel	VALVESImageBURIED VALVESImageGATE / REGULATORSImageGAS SUPPLIED = YESImageCP RECTIFIER UNITImageCP TEST POINT/ ANODEImageSYPHONImage	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
ERVICE (colou OW PRESSUR MEDIUM PRESS IIGH PRESSUR RANSMISSION RIORITY MAIN ROPOSED (col PG (colour by pr MBANDONED	R BY PRESSURE) ES SURES ES V PRESSURES V (BEHIND PIPE) DLOUR BY PRESSURE) ESSURE)	C2, CICast IronCUCopperN2, NY, NY11NylonP# (e.g. P6)Polyethylene (PE)P6,P7,P9-P12Medium Density PEP2,P4,P8High Density PEST or S#SteelS6# (e.g. S61)Steel Class 600	VALVESImageBURIED VALVESImageGATE / REGULATORSImageGAS SUPPLIED = YESImageCP RECTIFIER UNITImageCP TEST POINT/ ANODEImageSYPHONImageTRACE WIRE POINTImage	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
ERVICE (COLOU	R BY PRESSURE) ES SURES ES V PRESSURES V (BEHIND PIPE) DLOUR BY PRESSURE) ESSURE)	C2, CICast IronCUCopperN2, NY, NY11NylonP# (e.g. P6)Polyethylene (PE)P6,P7,P9-P12Medium Density PEP2,P4,P8High Density PEST or S#SteelS6# (e.g. S61)Steel Class 600S3# (e.g. S33)Steel Class 300	VALVESImage: mage: mage	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
ERVICE (colou OW PRESSUR MEDIUM PRESS IIGH PRESSUR RANSMISSION RIORITY MAIN ROPOSED (co PG (colour by pr BANDONED DLE	R BY PRESSURE) ES SURES ES V PRESSURES V (BEHINID PIPE) DLOUR BY PRESSURE) ESSURE)	C2, CICast IronCUCopperN2, NY, NY11NylonP# (e.g. P6)Polyethylene (PE)P6,P7,P9-P12Medium Density PEP2,P4,P8High Density PEST or S#SteelS6# (e.g. S61)Steel Class 600S3# (e.g. S33)Steel Class 300W2 or GALWrought Galv. IronW3 or PGALPoly Coat Wrought Galv. Iron	VALVES Image: mage:	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
ERVICE (colou OW PRESSUR MEDIUM PRESS IIGH PRESSUR RANSMISSION RIORITY MAIN ROPOSED (co PG (colour by pr NBANDONED DLE LEEVE CASING / SPLI INKNOWN	R BY PRESSURE) ES SURES ES N PRESSURES N (BEHIND PIPE) DLOUR BY PRESSURE) ESSURE) T (BEHIND PIPE)	C2, CICast IronCUCopperN2, NY, NY11NylonP# (e.g. P6)Polyethylene (PE)P6,P7,P9-P12Medium Density PEP2,P4,P8High Density PEST or S#SteelS6# (e.g. S61)Steel Class 600S3# (e.g. S33)Steel Class 300W2 or GALWrought Galv. IronW3 or PGALPoly Coat Wrought Galv. IronPipe diameter in millimetres is shown before pipe code	VALVES Image: mage:	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
ERVICE (colou OW PRESSUR MEDIUM PRESS IIGH PRESSUR RANSMISSION RIORITY MAIN ROPOSED (co PG (colour by pr MBANDONED DLE LEEVE CASING / SPLI INKNOWN ASEMENT/ JU	R BY PRESSURE) ES SURES ES V PRESSURES V (BEHIND PIPE) DLOUR BY PRESSURE) ESSURE) T (BEHIND PIPE)	C2, CICast IronCUCopperN2, NY, NY11NylonP# (e.g. P6)Polyethylene (PE)P6,P7,P9-P12Medium Density PEP2,P4,P8High Density PEST or S#SteelS6# (e.g. S61)Steel Class 600S3# (e.g. S33)Steel Class 300W2 or GALWrought Galv. IronW3 or PGALPoly Coat Wrought Galv. IronPipe diameter in millimetres is shown before pipe	VALVES Image: mage:	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
ERVICE (colou OW PRESSUR MEDIUM PRESS IGH PRESSUR RANSMISSION RIORITY MAIN ROPOSED (co PG (colour by pr BANDONED DLE LEEVE CASING / SPLI NKNOWN ASEMENT/ JU	R BY PRESSURE) ES SURES ES N PRESSURES N (BEHIND PIPE) CLOUR BY PRESSURE) ESSURE) T (BEHIND PIPE) IRISDICTION 40P6 in 80C2 40rr	C2, CI Cast Iron CU Copper N2, NY, NY11 Nylon P# (e.g. P6) Polyethylene (PE) P6,P7,P9-P12 Medium Density PE P2,P4,P8 High Density PE ST or S# Steel S6# (e.g. S61) Steel Class 600 S3# (e.g. S33) Steel Class 300 W2 or GAL Wrought Galv. Iron W3 or PGAL Poly Coat Wrought Galv. Iron Pipe diameter in millimetres is shown before pipe code e.g. 40P6 = 40mm nominal diameter	VALVES Image: mage:	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
ERVICE (colou OW PRESSUR AEDIUM PRESS IGH PRESSUR RANSMISSION RIORITY MAIN ROPOSED (col PG (colour by pr BANDONED DLE LEEVE CASING / SPLI NKNOWN ASEMENT/ JU XAMPLES	R BY PRESSURE) ES SURES ES N PRESSURES N (BEHIND PIPE) CLOUR BY PRESSURE) ESSURE) T (BEHIND PIPE) VRISDICTION 40P6 in 80C2 40rr 63S8 63rr	C2, CI Cast Iron CU Copper N2, NY, NY11 NyIon P# (e.g. P6) Polyethylene (PE) P6,P7,P9-P12 Medium Density PE P2,P4,P8 High Density PE ST or S# Steel S6# (e.g. S61) Steel Class 600 S3# (e.g. S33) Steel Class 300 W2 or GAL Wrought Galv. Iron W3 or PGAL Poly Coat Wrought Galv. Iron Pipe diameter in millimetres is shown before pipe code e.g. 40P6 = 40mm nominal diameter Im High Pressure Medium Density Polyethylene in an 80mm Im Medium Pressure Steel	VALVES Image: Market and the second seco	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
ERVICE (colou OW PRESSUR MEDIUM PRESS IIGH PRESSUR RANSMISSION RIORITY MAIN ROPOSED (col PG (colour by pr MBANDONED DLE LEEVE CASING / SPLI INKNOWN ASEMENT/ JU XAMPLES	R BY PRESSURE) ES SURES ES N PRESSURES N (BEHIND PIPE) CLOUR BY PRESSURE) ESSURE) T (BEHIND PIPE) IRISDICTION 40P6 in 80C2 40rr	C2, CI Cast Iron CU Copper N2, NY, NY11 Nylon P# (e.g. P6) Polyethylene (PE) P6,P7,P9-P12 Medium Density PE P2,P4,P8 High Density PE ST or S# Steel S6# (e.g. S61) Steel Class 600 S3# (e.g. S33) Steel Class 300 W2 or GAL Wrought Galv. Iron W3 or PGAL Poly Coat Wrought Galv. Iron Pipe diameter in millimetres is shown before pipe code e.g. 40P6 = 40mm nominal diameter	VALVES Image: Market and the second seco	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

 Mapping information is provided as AS5488-2013 Quality Level D

 APA Group • PO Box 6014 Halifax Street SA 5000 • Email: DBYDNetworksAPA@apa.com.au • Template: QLD Critical Jan 2022

 Page 24 of 28 06/11/2022

	43 Rodeo Drive Hillvue	2340		Sequence No	217880834	
efore you con				k In The Vicinity Of Critical Gas	s Assets' request forr	m and forward this to AP/
			as soon as prac	ticable.		
21						
			CODE / MATERIALS Cast Iron	OBJECTS or TERMS		Мар Кеу
PIPE AN SERVICE (COLOUR LOW PRESSURE	BY PRESSURE)	PIPE - C2, CI - CU	CODE / MATERIALS Cast Iron Copper	OBJECTS or TERMS VALVES BURIED VALVES		Map Key
ERVICE (colour OW PRESSURE MEDIUM PRESS	URES	 C2, CI CU N2, NY, NY11 	Cast Iron Copper Nylon	VALVES BURIED VALVES GATE / REGULATORS B • •	• •	
ERVICE (colour OW PRESSURE MEDIUM PRESS IIGH PRESSURE	BY PRESSURE)	 C2, CI CU N2, NY, NY11 P# (e.g. P6) 	Cast Iron Copper Nylon Polyethylene (PE)	VALVES BURIED VALVES GATE / REGULATORS GAS SUPPLIED = YES	• •	1 2 3 4 5 6 7 8 9 10 11 12 13
ERVICE (colour OW PRESSURE MEDIUM PRESS HIGH PRESSURE RANSMISSION	PRESSURES	 C2, CI CU N2, NY, NY11 P# (e.g. P6) P6,P7,P9-P12 	Cast Iron Copper Nylon Polyethylene (PE) Medium Density PE	VALVESBURIED VALVESGATE / REGULATORSGAS SUPPLIED = YESCP RECTIFIER UNIT	• •	1 2 3 4
ERVICE (colour OW PRESSURE MEDIUM PRESS HIGH PRESSURE RANSMISSION PRIORITY MAIN	BY PRESSURE) S URES ES PRESSURES (BEHIND PIPE)	 C2, CI CU N2, NY, NY11 P# (e.g. P6) P6,P7,P9-P12 P2,P4,P8 	Cast Iron Copper Nylon Polyethylene (PE)	VALVES BURIED VALVES GATE / REGULATORS GAS SUPPLIED = YES	© © ©	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
ERVICE (COLOUR OW PRESSURE MEDIUM PRESS HIGH PRESSURE RANSMISSION PRIORITY MAIN PROPOSED (COL	BY PRESSURE) S URES ES PRESSURES (BEHIND PIPE) LOUR BY PRESSURE)	 C2, CI CU N2, NY, NY11 P# (e.g. P6) P6,P7,P9-P12 P2,P4,P8 ST or S# 	Cast Iron Copper Nylon Polyethylene (PE) Medium Density PE High Density PE Steel	VALVESImage: Constraint of the second se	© © ©	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
ERVICE (colour OW PRESSURE MEDIUM PRESS HIGH PRESSURE RANSMISSION PRIORITY MAIN PROPOSED (col PG (colour by pre ABANDONED	BY PRESSURE) S URES ES PRESSURES (BEHIND PIPE) LOUR BY PRESSURE)	 C2, CI CU N2, NY, NY11 P# (e.g. P6) P6,P7,P9-P12 P2,P4,P8 ST or S# S6# (e.g. S61) S3# (e.g. S33) 	Cast Iron Copper Nylon Polyethylene (PE) Medium Density PE High Density PE Steel Steel Class 600 Steel Class 300	VALVESImage: Constraint of the second se	• • •	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
ERVICE (colour OW PRESSURE MEDIUM PRESS HIGH PRESSURE RANSMISSION PRIORITY MAIN PROPOSED (col LPG (colour by pre ABANDONED DLE	BY PRESSURE)	 C2, CI CU N2, NY, NY11 P# (e.g. P6) P6,P7,P9-P12 P2,P4,P8 ST or S# S6# (e.g. S61) S3# (e.g. S33) W2 or GAL 	Cast Iron Copper Nylon Polyethylene (PE) Medium Density PE High Density PE Steel Steel Class 600 Steel Class 300 Wrought Galv. Iron	VALVESImage: Constraint of the second se	• • ©	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
ERVICE (colour OW PRESSURE MEDIUM PRESS HIGH PRESSURE RANSMISSION PRIORITY MAIN PROPOSED (col PG (colour by pre ABANDONED DLE SLEEVE	BY PRESSURE) S URES ES PRESSURES (BEHIND PIPE) LOUR BY PRESSURE) SSURE)	 C2, CI CU N2, NY, NY11 P# (e.g. P6) P6,P7,P9-P12 P2,P4,P8 ST or S# S6# (e.g. S61) S3# (e.g. S33) W2 or GAL W3 or PGAL 	Cast Iron Copper Nylon Polyethylene (PE) Medium Density PE High Density PE Steel Steel Class 600 Steel Class 300	VALVESImage: Market and the second secon	• • ©	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
SERVICE (COLOUR OW PRESSURE MEDIUM PRESS HIGH PRESSURE RANSMISSION PRIORITY MAIN PROPOSED (COL LPG (COLOUR BY PRE ABANDONED DLE SLEEVE CASING / SPLIT	BY PRESSURE) S URES ES PRESSURES (BEHIND PIPE) LOUR BY PRESSURE) SSURE)	 C2, CI CU N2, NY, NY11 P# (e.g. P6) P6,P7,P9-P12 P2,P4,P8 ST or S# S6# (e.g. S61) S3# (e.g. S33) W2 or GAL W3 or PGAL 	Cast Iron Copper Nylon Polyethylene (PE) Medium Density PE High Density PE Steel Steel Class 600 Steel Class 300 Wrought Galv. Iron Poly Coat Wrought Galv. Iron	VALVESImage: Constraint of the second se	• • ©	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
ERVICE (colour COW PRESSURE MEDIUM PRESS HIGH PRESSURE RANSMISSION PRIORITY MAIN PROPOSED (col PG (colour by pre ABANDONED DLE ELEEVE CASING / SPLIT JNKNOWN	BY PRESSURE) S URES ES PRESSURES (BEHIND PIPE) (BEHIND PIPE) (BEHIND PIPE)	 C2, CI CU N2, NY, NY11 P# (e.g. P6) P6,P7,P9-P12 P2,P4,P8 ST or S# S6# (e.g. S61) S3# (e.g. S33) W2 or GAL W3 or PGAL Pipe diameterin e.g. 40P6 	Cast Iron Copper Nylon Polyethylene (PE) Medium Density PE High Density PE Steel Steel Class 600 Steel Class 300 Wrought Galv. Iron Poly Coat Wrought Galv. Iron	VALVESImage: Market and the second secon	• • ©	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
SERVICE (COLOUR	BY PRESSURE) S URES ES PRESSURES (BEHIND PIPE) (BEHIND PIPE)	 C2, CI CU N2, NY, NY11 P# (e.g. P6) P6,P7,P9-P12 P2,P4,P8 ST or S# S6# (e.g. S61) S3# (e.g. S33) W2 or GAL W3 or PGAL Pipe diameterir e.g. 40P6 	Cast Iron Copper Nylon Polyethylene (PE) Medium Density PE High Density PE Steel Steel Class 600 Steel Class 300 Wrought Galv. Iron Poly Coat Wrought Galv. Iron millimetres is shown before pipe code = 40mm nominal diameter	VALVES Image: Constraint of the second s	• • ©	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
ERVICE (COLOUR OW PRESSURE MEDIUM PRESS IGH PRESSURE RANSMISSION PRIORITY MAIN PROPOSED (COL PG (COLOUR BY PRE ABANDONED DLE LEEVE CASING / SPLIT INKNOWN CASEMENT/ JUR	BY PRESSURE) S URES ES PRESSURES (BEHIND PIPE) (BEHIND PIPE)	 C2, CI CU N2, NY, NY11 P# (e.g. P6) P6,P7,P9-P12 P2,P4,P8 ST or S# S6# (e.g. S61) S3# (e.g. S33) W2 or GAL W3 or PGAL Pipe diameterir e.g. 40P6 Omm High Pressure Media 3mm Medium Pressure S 	Cast Iron Copper Nylon Polyethylene (PE) Medium Density PE High Density PE Steel Steel Class 600 Steel Class 300 Wrought Galv. Iron Poly Coat Wrought Galv. Iron millimetres is shown before pipe code = 40mm nominal diameter	VALVES Image: Constraint of the second s	• • ©	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

 Mapping information is provided as AS5488-2013 Quality Level D

 APA Group • PO Box 6014 Halifax Street SA 5000 • Email: DBYDNetworksAPA@apa.com.au • Template: QLD Critical Jan 2022

 Page 25 of 28 06/11/2022

WORK IN THE VICINITY OF CRITICAL GAS ASSETS

It is your responsibility to read and complete this request form

- 1. This request form must be received by the APA Group via the options below at least <u>5 business days</u> prior to excavation or site location work commencement
- 2. Excavation / works must not commence on site until you have received a 'Authority to Work Permit' from the APA Group
- 3. This request form must be accompanied by a detailed schedule of works
- 4. Penalties apply to excavators commencing work in the vicinity of Critical Gas Assets **prior to receiving an APA Group 'Authority to Work Permit'**

For further information refer to:-

- NSW Gas Supply Act 1996 Sec 64 C, Requirements in relation to carrying out of certain excavation work
- Victoria: Pipelines Act 2005 Section 118, Digging near pipelines and Section 119, Interference with pipeline
- South Australia: Gas Industry Act 1997 Section 83, Notice of work that may affect gas infrastructure.
- Northern Territory: Energy Pipelines Act as in force at 8 March 2007 Section 66, Threat to pipeline.

Return to: <u>PermitsQld@apa.com.au</u>

Enquiries:

Should you have any questions with regards to the attached information please contact our Qld Planning & Scheduling Officer - (07) 3215 6644.

Work / Excavation Site Details:

Number:	Street:			
Suburb:		State:		
Sequence Number: 217880834				
Requestors Name:				
Company Name:				
Name of Authorised Comp	Name of Authorised Company Site Representative:			
Email:				
Phone:	Mobile:			

Signature:

Description of Work / Excavation:

Activity/Excavation Details:					
Tick Applicable Box					
Excavation		Change to surface level			
Service crossing		Boring			
Proving		Other (provide details)			
Earthworks					
Excavator Size, Tooth Type & Tooth Size (provid	de details)				

Work / Excavation Drawings Attached (circle):

Proposed Dates and Times:						
From			То			
Excavation	Date	Time	Date	Time		
	/ /	am/pm	/ /	am/pm		
Backfill	Date	Time	Date	Time		
	/ /	am/pm	/ /	am/pm		

<u>Yes</u>

<u>No</u>

Work is as-	Class 1	Class 2	Class 3
sessed as:	Works crossing a critical gas asset	Works within 3m of a critical gas asset	Works involving large excavations, vibrations or blasting beyond 3m of the critical gas asset

Insurer and Policy Details

Policy Number		Policy Expiry Date	
Insurance Cover	- Current Level (\$amount)		

Third Party Works Authorisation requested by (mandatory fields required for invoicing):

Company/Biller Name:			
Billing Address:			
Purchase Order:	Billing Email:		
Biller Phone:			
Requestors Name:	Requesters Signature:		

<u>NOTES</u>

- 5. This Authority to Work applies only to work in the vicinity of the Gas Mains. It does not authorise work near or on the Gas Mains itself
- 6. A minimum of 2 business days must be allowed between receipt by APA Group of this Request and a response. However, more time for notification may be necessary
- 7. For any gas leak related work this application must be accompanied by a detailed sequence of events, outlining all aspects of work involved and work is not permitted until an Authority to Work is issued
- 8. For class 1 and 2 Dial Before You Dig, APA Group will arrange for an inspector to be on site as necessary during the work. An inspector must be present at all times for works involving excavation within 1m of the Gas Mains. APA Group will advise the requirement for an inspector for other works within 3m of the Gas Mains
- 9. The applicant is responsible for any damage resulting from the work and all consequential damages and losses arising from such damage and therefore must insure against every liability of the contractor in respect of or arising out of any loss of life, loss of or damage to property of person (both real and personal), arising out of or in any way connected to this permit.
- 10. Rates applicable to APA on-site representation for supervision or location exclude GST.

□ 0419 444 669
 □ abn 53 126 494 776

😂 admin@mossenviro.com

🔁 www.mossenviro.com

☆ PO Box 390, Tamworth NSW 2340

APPENDIX C – NSW EPA CONTAMINATED LAND RECORD

Matched 11 notices relating to 5 sites.

Home Public registers Contaminated land record of notices

Search results

Your search for: LGA: TAMWORTH REGIONAL COUNCIL

		Search Again	
		R	efine Search
Suburb	Address	Site Name	Notices
			related to this site
DURI	13 Railway AVENUE	<u>Duri Store</u>	1 current
SOUTH	251 - 253 Goonoo	<u>Coles Express Tamworth</u>	4 current
	Goonoo ROAD		
TAMWORTH	115 Marius STREET	Elgas Depot (former gasworks	 2 current
TAMWORTH	49 GUNNEDAH ROAD	<u>Gunnedah Road Site</u>	2 former
WOOLOMIN	65 Nundle ROAD	<u>Woolomin Gold Rush Store</u>	2 former

Page 1 of 1

5 November 2022

For business and industry ^

For local government ^

Contact us

131 555 (tel:131555)

Online (https://www.epa.nsw.gov.au/about-us/contact-us/feedback)

info@epa.nsw.gov.au (mailto:info@epa.nsw.gov.au)

EPA Office Locations (https://www.epa.nsw.gov.au/about-us/contact-us/locations)

Accessibility (https://www.epa.nsw.gov.au/about-us/contact-us/website-service-standards/help-index) Disclaimer (https://www.epa.nsw.gov.au/about-us/contact-us/website-service-standards/disclaimer) Privacy (https://www.epa.nsw.gov.au/about-us/contact-us/website-service-standards/privacy) Copyright (https://www.epa.nsw.gov.au/about-us/contact-us/website-service-standards/copyright) in (https://au.l environmer protectiony authority-(https://wttper//c

Find us on

☐ 0419 444 669 ABN 53 126 494 776 😂 admin@mossenviro.com

🔄 www.mossenviro.com

♠ PO Box 390, Tamworth NSW 2340

APPENDIX D – LABORATORY RESULTS

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 310991

Client Details	
Client	Moss Environmental
Attention	Elizabeth Ogunsote
Address	24 Fitzroy Street, Tamworth, NSW, 2340

Sample Details	
Your Reference	Moss Environmental- J000109 Arcadia Estate PSI
Number of Samples	23 Soil, 2 Water
Date samples received	18/11/2022
Date completed instructions received	18/11/2022

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details				
Date results requested by	25/11/2022			
Date of Issue	25/11/2022			
NATA Accreditation Number 2901. This document shall not be reproduced except in full.				
Accredited for compliance with ISO/IEC	17025 - Testing. Tests not covered by NATA are denoted with *			

Results Approved By

Diego Bigolin, Inorganics Supervisor Giovanni Agosti, Group Technical Manager Josh Williams, Organics and LC Supervisor Kyle Gavrily, Senior Chemist Liam Timmins, Organic Instruments Team Leader Loren Bardwell, Development Chemist Authorised By

Nancy Zhang, Laboratory Manager

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		310991-12	310991-16	310991-19	310991-23	310991-24
Your Reference	UNITS	SP-M	SP-Q	SP-T	Trip Spike	Trip Blank
Depth		0.1	0.1	0.1	-	-
Date Sampled		15/11/2022	15/11/2022	15/11/2022	16/11/2022	16/11/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	22/11/2022	22/11/2022	22/11/2022	22/11/2022	22/11/2022
Date analysed	-	25/11/2022	25/11/2022	25/11/2022	25/11/2022	25/11/2022
TRH C6 - C9	mg/kg	<25	<25	<25		<25
TRH C6 - C10	mg/kg	<25	<25	<25		<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25		<25
Benzene	mg/kg	<0.2	<0.2	<0.2	101%	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	102%	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	102%	<1
m+p-xylene	mg/kg	<2	<2	<2	103%	<2
o-Xylene	mg/kg	<1	<1	<1	100%	<1
Naphthalene	mg/kg	<1	<1	<1	[NT]	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	[NT]	<1
Surrogate aaa-Trifluorotoluene	%	100	107	105	115	107

svTRH (C10-C40) in Soil				
Our Reference		310991-12	310991-16	310991-19
Your Reference	UNITS	SP-M	SP-Q	SP-T
Depth		0.1	0.1	0.1
Date Sampled		15/11/2022	15/11/2022	15/11/2022
Type of sample		Soil	Soil	Soil
Date extracted	-	22/11/2022	22/11/2022	22/11/2022
Date analysed	-	23/11/2022	23/11/2022	23/11/2022
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100
Total +ve TRH (C10-C36)	mg/kg	<50	<50	<50
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50
Surrogate o-Terphenyl	%	86	86	84

PAHs in Soil				
Our Reference		310991-12	310991-16	310991-19
Your Reference	UNITS	SP-M	SP-Q	SP-T
Depth		0.1	0.1	0.1
Date Sampled		15/11/2022	15/11/2022	15/11/2022
Type of sample		Soil	Soil	Soil
Date extracted	-	22/11/2022	22/11/2022	22/11/2022
Date analysed	-	24/11/2022	24/11/2022	24/11/2022
Naphthalene	mg/kg	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	67	69	65

Organochlorine Pesticides in soil				
Our Reference		310991-12	310991-16	310991-19
Your Reference	UNITS	SP-M	SP-Q	SP-T
Depth		0.1	0.1	0.1
Date Sampled		15/11/2022	15/11/2022	15/11/2022
Type of sample		Soil	Soil	Soil
Date extracted	-	22/11/2022	22/11/2022	22/11/2022
Date analysed	-	24/11/2022	24/11/2022	24/11/2022
alpha-BHC	mg/kg	<0.1	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1
Surrogate TCMX	%	75	75	73

Organophosphorus Pesticides in Soil				
Our Reference		310991-12	310991-16	310991-19
Your Reference	UNITS	SP-M	SP-Q	SP-T
Depth		0.1	0.1	0.1
Date Sampled		15/11/2022	15/11/2022	15/11/2022
Type of sample		Soil	Soil	Soil
Date extracted	-	22/11/2022	22/11/2022	22/11/2022
Date analysed	-	24/11/2022	24/11/2022	24/11/2022
Dichlorvos	mg/kg	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1
Surrogate TCMX	%	75	75	73

PCBs in Soil				
Our Reference		310991-12	310991-16	310991-19
Your Reference	UNITS	SP-M	SP-Q	SP-T
Depth		0.1	0.1	0.1
Date Sampled		15/11/2022	15/11/2022	15/11/2022
Type of sample		Soil	Soil	Soil
Date extracted	-	22/11/2022	22/11/2022	22/11/2022
Date analysed	-	24/11/2022	24/11/2022	24/11/2022
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1
Surrogate TCMX	%	75	75	73

Acid Extractable metals in soil				
Our Reference		310991-12	310991-16	310991-19
Your Reference	UNITS	SP-M	SP-Q	SP-T
Depth		0.1	0.1	0.1
Date Sampled		15/11/2022	15/11/2022	15/11/2022
Type of sample		Soil	Soil	Soil
Date prepared	-	25/11/2022	25/11/2022	25/11/2022
Date analysed	-	25/11/2022	25/11/2022	25/11/2022
Arsenic	mg/kg	5	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4
Chromium	mg/kg	14	15	13
Copper	mg/kg	29	28	33
Lead	mg/kg	13	9	9
Mercury	mg/kg	<0.1	<0.1	<0.1
Nickel	mg/kg	15	9	11
Zinc	mg/kg	49	33	44

Moisture						
Our Reference		310991-1	310991-2	310991-3	310991-4	310991-5
Your Reference	UNITS	SP-A	SP-B	SP-C	SP-D	SP-E
Depth		0.1	0.1	0.1	0.1	0.1
Date Sampled		16/11/2022	16/11/2022	15/11/2022	15/11/2022	15/11/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	22/11/2022	22/11/2022	22/11/2022	22/11/2022	22/11/2022
Date analysed	-	23/11/2022	23/11/2022	23/11/2022	23/11/2022	23/11/2022
Moisture	%	16	16	18	13	16
Moisture						
Our Reference		310991-6	310991-7	310991-8	310991-9	310991-10
Your Reference	UNITS	SP-F	SP-G	SP-H	SP-I	SP-J
Depth		0.1	0.1	0.1	0.1	0.1
Date Sampled		15/11/2022	16/11/2022	15/11/2022	16/11/2022	16/11/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	22/11/2022	22/11/2022	22/11/2022	22/11/2022	22/11/2022
Date analysed	-	23/11/2022	23/11/2022	23/11/2022	23/11/2022	23/11/2022
Moisture	%	18	21	16	15	15
Moisture						
Our Reference		310991-11	310991-12	310991-13	310991-14	310991-15
Your Reference	UNITS	SP-L	SP-M	SP-N	SP-O	SP-P
Depth		0.1	0.1	0.1	0.1	0.1
Date Sampled		16/11/2022	15/11/2022	15/11/2022	16/11/2022	15/11/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	22/11/2022	22/11/2022	22/11/2022	22/11/2022	22/11/2022
Date analysed	-	23/11/2022	23/11/2022	23/11/2022	23/11/2022	23/11/2022
Moisture	%	28	18	17	29	22
Moisture						
Our Reference		310991-16	310991-17	310991-18	310991-19	310991-20
Your Reference	UNITS	SP-Q	SP-R	SP-S	SP-T	SP-T2
Depth		0.1	0.1	0.1	0.1	0.1
Date Sampled		15/11/2022	16/11/2022	15/11/2022	15/11/2022	15/11/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	22/11/2022	22/11/2022	22/11/2022	22/11/2022	22/11/2022
Date analysed Moisture	- %	23/11/2022 15	23/11/2022 14	23/11/2022 21	23/11/2022 16	23/11/2022 14

Moisture		
Our Reference		310991-21
Your Reference	UNITS	SP-1
Depth		0.1
Date Sampled		16/11/2022
Type of sample		Soil
Date prepared	-	22/11/2022
Date analysed	-	23/11/2022
Moisture	%	23

Acid Extractable Cations in Soil						
Our Reference		310991-1	310991-2	310991-3	310991-4	310991-5
Your Reference	UNITS	SP-A	SP-B	SP-C	SP-D	SP-E
Depth		0.1	0.1	0.1	0.1	0.1
Date Sampled		16/11/2022	16/11/2022	15/11/2022	15/11/2022	15/11/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	25/11/2022	25/11/2022	25/11/2022	25/11/2022	25/11/2022
Date analysed	-	25/11/2022	25/11/2022	25/11/2022	25/11/2022	25/11/2022
Sodium	mg/kg	180	60	80	100	60
Acid Extractable Cations in Soil						
Our Reference		310991-6	310991-7	310991-8	310991-9	310991-10
Your Reference	UNITS	SP-F	SP-G	SP-H	SP-I	SP-J
Depth		0.1	0.1	0.1	0.1	0.1
Date Sampled		15/11/2022	16/11/2022	15/11/2022	16/11/2022	16/11/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	25/11/2022	25/11/2022	25/11/2022	25/11/2022	25/11/2022
Date analysed	-	25/11/2022	25/11/2022	25/11/2022	25/11/2022	25/11/2022
Sodium	mg/kg	100	90	60	100	110
Acid Extractable Cations in Soil						
Our Reference		310991-11	310991-12	310991-13	310991-14	310991-15
Your Reference	UNITS	SP-L	SP-M	SP-N	SP-O	SP-P
Depth		0.1	0.1	0.1	0.1	0.1
Date Sampled		16/11/2022	15/11/2022	15/11/2022	16/11/2022	15/11/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	25/11/2022	25/11/2022	25/11/2022	25/11/2022	25/11/2022
Date analysed	-	25/11/2022	25/11/2022	25/11/2022	25/11/2022	25/11/2022
Sodium	mg/kg	70	110	70	70	90
Acid Extractable Cations in Soil						
Our Reference		310991-16	310991-17	310991-18	310991-19	310991-20
Your Reference	UNITS	SP-Q	SP-R	SP-S	SP-T	SP-T2
Your Reference Depth	UNITS	SP-Q 0.1	SP-R 0.1	SP-S 0.1	SP-T 0.1	SP-T2 0.1
	UNITS					
Depth	UNITS	0.1	0.1	0.1	0.1	0.1
Depth Date Sampled	UNITS -	0.1 15/11/2022	0.1 16/11/2022	0.1 15/11/2022	0.1 15/11/2022	0.1 15/11/2022
Depth Date Sampled Type of sample		0.1 15/11/2022 Soil	0.1 16/11/2022 Soil	0.1 15/11/2022 Soil	0.1 15/11/2022 Soil	0.1 15/11/2022 Soil

Acid Extractable Cations in Soil		
Our Reference		310991-21
Your Reference	UNITS	SP-1
Depth		0.1
Date Sampled		16/11/2022
Type of sample		Soil
Date prepared	-	25/11/2022
Date analysed	-	25/11/2022
Sodium	mg/kg	80

Misc Inorg - Soil						
Our Reference		310991-1	310991-2	310991-3	310991-4	310991-5
Your Reference	UNITS	SP-A	SP-B	SP-C	SP-D	SP-E
Depth		0.1	0.1	0.1	0.1	0.1
Date Sampled		16/11/2022	16/11/2022	15/11/2022	15/11/2022	15/11/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	18/11/2022	18/11/2022	18/11/2022	18/11/2022	18/11/2022
Date analysed	-	23/11/2022	23/11/2022	23/11/2022	23/11/2022	23/11/2022
pH 1:5 soil:water	pH Units	7.8	6.7	6.7	6.0	6.5
Estimated Salinity*	mg/kg	150	74	100	1,300	71
Misc Inorg - Soil						
Our Reference		310991-6	310991-7	310991-8	310991-9	310991-10
Your Reference	UNITS	SP-F	SP-G	SP-H	SP-I	SP-J
Depth		0.1	0.1	0.1	0.1	0.1
Date Sampled		15/11/2022	16/11/2022	15/11/2022	16/11/2022	16/11/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	18/11/2022	18/11/2022	18/11/2022	18/11/2022	18/11/2022
Date analysed	-	23/11/2022	23/11/2022	23/11/2022	23/11/2022	23/11/2022
pH 1:5 soil:water	pH Units	6.9	6.6	6.5	6.3	6.2
Estimated Salinity*	mg/kg	150	85	71	71	260
Misc Inorg - Soil						
Our Reference		310991-11	310991-12	310991-13	310991-14	310991-15
Your Reference	UNITS	SP-L	SP-M	SP-N	SP-O	SP-P
Depth		0.1	0.1	0.1	0.1	0.1
Date Sampled		16/11/2022	15/11/2022	15/11/2022	16/11/2022	15/11/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	18/11/2022	18/11/2022	18/11/2022	18/11/2022	18/11/2022
Date analysed	-	23/11/2022	23/11/2022	23/11/2022	23/11/2022	23/11/2022
pH 1:5 soil:water	pH Units	6.0	6.2	6.2	6.5	6.5
Estimated Salinity*	mg/kg	130	110	110	170	290
Misc Inorg - Soil						
Our Reference		310991-16	310991-17	310991-18	310991-19	310991-20
Your Reference	UNITS	SP-Q	SP-R	SP-S	SP-T	SP-T2
Depth		0.1	0.1	0.1	0.1	0.1
Date Sampled		15/11/2022	16/11/2022	15/11/2022	15/11/2022	15/11/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	18/11/2022	18/11/2022	18/11/2022	18/11/2022	18/11/2022
Date analysed	-	23/11/2022	23/11/2022	23/11/2022	23/11/2022	23/11/2022
pH 1:5 soil:water	pH Units	7.1	7.0	7.3	7.0	6.2
Estimated Salinity*	mg/kg	100	76	250	100	120

Misc Inorg - Soil		
Our Reference		310991-21
Your Reference	UNITS	SP-1
Depth		0.1
Date Sampled		16/11/2022
Type of sample		Soil
Date prepared	-	18/11/2022
Date analysed	-	23/11/2022
pH 1:5 soil:water	pH Units	6.3
Estimated Salinity*	mg/kg	95

vTRH(C6-C10)/BTEXN in Water		
Our Reference		310991-25
Your Reference	UNITS	Rinsate
Depth		-
Date Sampled		16/11/2022
Type of sample		Water
Date extracted	-	24/11/2022
Date analysed	-	25/11/2022
TRH C ₆ - C ₉	µg/L	<10
TRH C ₆ - C ₁₀	µg/L	<10
TRH C ₆ - C ₁₀ less BTEX (F1)	µg/L	<10
Benzene	µg/L	<1
Toluene	µg/L	<1
Ethylbenzene	µg/L	<1
m+p-xylene	µg/L	<2
o-xylene	µg/L	<1
Naphthalene	µg/L	<1
Surrogate Dibromofluoromethane	%	102
Surrogate toluene-d8	%	100
Surrogate 4-BFB	%	101

svTRH (C10-C40) in Water				
Our Reference		310991-25		
Your Reference	UNITS	Rinsate		
Depth		-		
Date Sampled		16/11/2022		
Type of sample		Water		
Date extracted	-	22/11/2022		
Date analysed	-	23/11/2022		
TRH C ₁₀ - C ₁₄	µg/L	<50		
TRH C ₁₅ - C ₂₈	µg/L	<100		
TRH C ₂₉ - C ₃₆	µg/L	<100		
Total +ve TRH (C10-C36)	µg/L	<50		
TRH >C ₁₀ - C ₁₆	µg/L	<50		
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	µg/L	<50		
TRH >C ₁₆ - C ₃₄	µg/L	<100		
TRH >C ₃₄ - C ₄₀	µg/L	<100		
Total +ve TRH (>C10-C40)	µg/L	<50		
Surrogate o-Terphenyl	%	76		

PAHs in Water		
Our Reference		310991-25
Your Reference	UNITS	Rinsate
Depth		-
Date Sampled		16/11/2022
Type of sample		Water
Date extracted	-	22/11/2022
Date analysed	-	23/11/2022
Naphthalene	µg/L	<1
Acenaphthylene	µg/L	<1
Acenaphthene	μg/L	<1
Fluorene	µg/L	<1
Phenanthrene	µg/L	<1
Anthracene	µg/L	<1
Fluoranthene	μg/L	<1
Pyrene	µg/L	<1
Benzo(a)anthracene	µg/L	<1
Chrysene	µg/L	<1
Benzo(b,j+k)fluoranthene	µg/L	<2
Benzo(a)pyrene	µg/L	<1
Indeno(1,2,3-c,d)pyrene	μg/L	<1
Dibenzo(a,h)anthracene	µg/L	<1
Benzo(g,h,i)perylene	µg/L	<1
Benzo(a)pyrene TEQ	µg/L	<5
Total +ve PAH's	µg/L	NIL (+)VE
Surrogate p-Terphenyl-d14	%	77

Organochlorine Pesticides in Water		
Our Reference		310991-25
Your Reference	UNITS	Rinsate
Depth		-
Date Sampled		16/11/2022
Type of sample		Water
Date extracted	-	22/11/2022
Date analysed	-	23/11/2022
alpha-BHC	μg/L	<0.2
НСВ	µg/L	<0.2
beta-BHC	μg/L	<0.2
gamma-BHC	μg/L	<0.2
Heptachlor	µg/L	<0.2
delta-BHC	µg/L	<0.2
Aldrin	µg/L	<0.2
Heptachlor Epoxide	µg/L	<0.2
gamma-Chlordane	μg/L	<0.2
alpha-Chlordane	µg/L	<0.2
Endosulfan I	µg/L	<0.2
pp-DDE	µg/L	<0.2
Dieldrin	µg/L	<0.2
Endrin	µg/L	<0.2
Endosulfan II	µg/L	<0.2
pp-DDD	μg/L	<0.2
Endrin Aldehyde	µg/L	<0.2
pp-DDT	µg/L	<0.2
Endosulfan Sulphate	µg/L	<0.2
Methoxychlor	µg/L	<0.2
Surrogate TCMX	%	76

OP Pesticides in Water		
Our Reference		310991-25
Your Reference	UNITS	Rinsate
Depth		-
Date Sampled		16/11/2022
Type of sample		Water
Date extracted	-	22/11/2022
Date analysed	-	23/11/2022
Dichlorvos	µg/L	<0.2
Dimethoate	µg/L	<0.2
Diazinon	µg/L	<0.2
Chlorpyriphos-methyl	µg/L	<0.2
Ronnel	µg/L	<0.2
Fenitrothion	µg/L	<0.2
Malathion	µg/L	<0.2
Chlorpyriphos	µg/L	<0.2
Parathion	µg/L	<0.2
Bromophos ethyl	µg/L	<0.2
Ethion	µg/L	<0.2
Azinphos-methyl (Guthion)	µg/L	<0.2
Surrogate TCMX	%	76

PCBs in Water		
Our Reference		310991-25
Your Reference	UNITS	Rinsate
Depth		-
Date Sampled		16/11/2022
Type of sample		Water
Date extracted	-	22/11/2022
Date analysed	-	23/11/2022
Aroclor 1016	μg/L	<2
Aroclor 1221	µg/L	<2
Aroclor 1232	µg/L	<2
Aroclor 1242	µg/L	<2
Aroclor 1248	µg/L	<2
Aroclor 1254	µg/L	<2
Aroclor 1260	µg/L	<2
Surrogate TCMX	%	76

Metals in Water - Dissolved		
Our Reference		310991-25
Your Reference	UNITS	Rinsate
Depth		-
Date Sampled		16/11/2022
Type of sample		Water
Date digested	-	23/11/2022
Date analysed	-	23/11/2022
Arsenic - Dissolved	mg/L	<0.05
Cadmium - Dissolved	mg/L	<0.01
Chromium - Dissolved	mg/L	<0.01
Copper - Dissolved	mg/L	<0.01
Lead - Dissolved	mg/L	<0.03
Mercury - Dissolved	mg/L	<0.0005
Nickel - Dissolved	mg/L	<0.02
Zinc - Dissolved	mg/L	<0.02

Cations in water Dissolved		
Our Reference		310991-25
Your Reference	UNITS	Rinsate
Depth		-
Date Sampled		16/11/2022
Type of sample		Water
Date digested	-	23/11/2022
Date analysed	-	24/11/2022
Sodium - Dissolved	mg/L	<0.5

Miscellaneous Inorganics			
Our Reference		310991-22	310991-25
Your Reference	UNITS	SW-1	Rinsate
Depth		-	-
Date Sampled		16/11/2022	16/11/2022
Type of sample		Water	Water
Date prepared	-	22/11/2022	22/11/2022
Date analysed	-	22/11/2022	22/11/2022
рН	pH Units		6.1
Salinity as NaCl*	g/L	0.08	<0.01

Method ID	Methodology Summary
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell at 25°C in accordance with APHA latest edition 2510 and Rayment & Lyons.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Inorg-034	Soil samples are extracted and measured using a conductivity cell and dedicated meter.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.
Org-022	Determination of VOCs sampled onto coconut shell charcoal sorbent tubes, that can be desorbed using carbon disulphide, and analysed by GC-MS.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS.
Org-022/025	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-MS/GC-MSMS.
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.

Method ID	Methodology Summary
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" may="" most="" not="" pahs="" positive="" pql.="" present.<br="" teq="" teqs="" that="" the="" this="" to="">2. 'EQ zero'values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" more="" negative="" pahs="" pql.<br="" present="" susceptible="" teq="" teqs="" that="" the="" this="" to="" when="" zero.="">3. 'EQ half PQL'values are assuming all contributing PAHs reported as <pql a="" above.<br="" and="" approaches="" are="" between="" conservative="" half="" hence="" least="" mid-point="" most="" pql.="" stipulated="" the="">Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore "Total +ve PAHs" is simply a sum of the positive individual PAHs.</pql></pql></pql>
Org-023	Water samples are analysed directly by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALITY CONTROL: vTRH(C6-C10)/BTEXN in Soil						Duplicate			Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-12	[NT]
Date extracted	-			22/11/2022	[NT]		[NT]	[NT]	22/11/2022	
Date analysed	-			25/11/2022	[NT]		[NT]	[NT]	25/11/2022	
TRH C ₆ - C ₉	mg/kg	25	Org-023	<25	[NT]		[NT]	[NT]	116	
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	<25	[NT]		[NT]	[NT]	116	
Benzene	mg/kg	0.2	Org-023	<0.2	[NT]		[NT]	[NT]	114	
Toluene	mg/kg	0.5	Org-023	<0.5	[NT]		[NT]	[NT]	120	
Ethylbenzene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	116	
m+p-xylene	mg/kg	2	Org-023	<2	[NT]		[NT]	[NT]	111	
o-Xylene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	117	
Naphthalene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Surrogate aaa-Trifluorotoluene	%		Org-023	110	[NT]		[NT]	[NT]	118	

QUALITY CONTROL: svTRH (C10-C40) in Soil						Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-12	[NT]
Date extracted	-			22/11/2022	[NT]		[NT]	[NT]	22/11/2022	
Date analysed	-			23/11/2022	[NT]		[NT]	[NT]	23/11/2022	
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	<50	[NT]		[NT]	[NT]	100	
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	85	
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	86	
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	<50	[NT]		[NT]	[NT]	100	
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	85	
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	86	
Surrogate o-Terphenyl	%		Org-020	86	[NT]		[NT]	[NT]	88	

QUALIT	TY CONTRO	L: PAHs	in Soil			Du	plicate		Spike Rec	overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-12	[NT]
Date extracted	-			22/11/2022	[NT]		[NT]	[NT]	22/11/2022	
Date analysed	-			24/11/2022	[NT]		[NT]	[NT]	24/11/2022	
Naphthalene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	80	
Acenaphthylene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Acenaphthene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	79	
Fluorene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	67	
Phenanthrene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	82	
Anthracene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Fluoranthene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	82	
Pyrene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	83	
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Chrysene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	63	
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]	
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	<0.05	[NT]		[NT]	[NT]	86	
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Surrogate p-Terphenyl-d14	%		Org-022/025	74	[NT]		[NT]	[NT]	71	

QUALITY CONTI	ROL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Rec	overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-12	[NT]
Date extracted	-			22/11/2022	[NT]		[NT]	[NT]	22/11/2022	
Date analysed	-			24/11/2022	[NT]		[NT]	[NT]	24/11/2022	
alpha-BHC	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	84	
НСВ	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
beta-BHC	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	84	
gamma-BHC	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Heptachlor	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	81	
delta-BHC	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Aldrin	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	81	
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	68	
gamma-Chlordane	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
alpha-chlordane	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Endosulfan I	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
pp-DDE	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	72	
Dieldrin	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	100	
Endrin	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	76	
Endosulfan II	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
pp-DDD	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	68	
Endrin Aldehyde	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
pp-DDT	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	80	
Methoxychlor	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Surrogate TCMX	%		Org-022/025	78	[NT]		[NT]	[NT]	75	

QUALITY CONTRO	L: Organoph	nosphorus	s Pesticides in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-12	[NT]
Date extracted	-			22/11/2022	[NT]		[NT]	[NT]	22/11/2022	
Date analysed	-			24/11/2022	[NT]		[NT]	[NT]	24/11/2022	
Dichlorvos	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	81	
Dimethoate	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Diazinon	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Chlorpyriphos-methyl	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Ronnel	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	75	
Fenitrothion	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	79	
Malathion	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	69	
Chlorpyriphos	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	98	
Parathion	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	82	
Bromophos-ethyl	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]	
Ethion	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	78	
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Surrogate TCMX	%		Org-022/025	78	[NT]		[NT]	[NT]	75	

QUALIT	Y CONTRO	L: PCBs	in Soil			Du	plicate		Spike Rec	overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-12	[NT]
Date extracted	-			22/11/2022	[NT]		[NT]	[NT]	22/11/2022	
Date analysed	-			24/11/2022	[NT]		[NT]	[NT]	24/11/2022	
Aroclor 1016	mg/kg	0.1	Org-021	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1221	mg/kg	0.1	Org-021	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1232	mg/kg	0.1	Org-021	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1242	mg/kg	0.1	Org-021	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1248	mg/kg	0.1	Org-021	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1254	mg/kg	0.1	Org-021	<0.1	[NT]		[NT]	[NT]	84	
Aroclor 1260	mg/kg	0.1	Org-021	<0.1	[NT]		[NT]	[NT]	[NT]	
Surrogate TCMX	%		Org-021	78	[NT]	[NT]	[NT]	[NT]	75	[NT]

QUALITY CONT	ROL: Acid E	xtractable	e metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			25/11/2022	[NT]		[NT]	[NT]	25/11/2022	
Date analysed	-			25/11/2022	[NT]		[NT]	[NT]	25/11/2022	
Arsenic	mg/kg	4	Metals-020	<4	[NT]		[NT]	[NT]	94	
Cadmium	mg/kg	0.4	Metals-020	<0.4	[NT]		[NT]	[NT]	97	
Chromium	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	91	
Copper	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	92	
Lead	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	91	
Mercury	mg/kg	0.1	Metals-021	<0.1	[NT]		[NT]	[NT]	93	
Nickel	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	91	
Zinc	mg/kg	1	Metals-020	<1	[NT]	[NT]	[NT]	[NT]	91	[NT]

QUALITY CONTI	ROL: Acid E	xtractable	Cations in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	310991-2
Date prepared	-			25/11/2022	1	25/11/2022	25/11/2022		25/11/2022	25/11/2022
Date analysed	-			25/11/2022	1	25/11/2022	25/11/2022		25/11/2022	25/11/2022
Sodium	mg/kg	10	Metals-020	<10	1	180	180	0	92	88
QUALITY CONTI	ROL: Acid E	xtractable	e Cations in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-2	310991-18
Date prepared	-			[NT]	11	25/11/2022	25/11/2022		25/11/2022	25/11/2022
Date analysed	-			[NT]	11	25/11/2022	25/11/2022		25/11/2022	25/11/2022
Sodium	mg/kg	10	Metals-020	[NT]	11	70	70	0	89	89
QUALITY CONTI	ROL: Acid E	xtractable	e Cations in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	17	25/11/2022	25/11/2022		[NT]	[NT]
Date analysed	-			[NT]	17	25/11/2022	25/11/2022		[NT]	[NT]
Sodium	mg/kg	10	Metals-020	[NT]	17	110	130	17	[NT]	[NT]

QUALITY	Date prepared - 18/11/2 Date analysed - 23/11/2					Du	olicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			18/11/2022	1	18/11/2022	18/11/2022		18/11/2022	
Date analysed	-			23/11/2022	1	23/11/2022	23/11/2022		23/11/2022	
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	1	7.8	7.8	0	101	
Estimated Salinity*	mg/kg	5	Inorg-034	<5	1	150	160	6	[NT]	

Date prepared - Image: Constraint of the second se					Duplicate				Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-2	[NT]
Date prepared	-			[NT]	4	18/11/2022	18/11/2022		18/11/2022	
Date analysed	-			[NT]	4	23/11/2022	23/11/2022		23/11/2022	
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	4	6.0	6.0	0	100	
Estimated Salinity*	mg/kg	5	Inorg-034	[NT]	4	1300	1300	0	[NT]	

Date prepared -					Duplicate				Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]	
Date prepared	-			[NT]	19	18/11/2022	18/11/2022		[NT]	[NT]	
Date analysed	-			[NT]	19	23/11/2022	23/11/2022		[NT]	[NT]	
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	19	7.0	7.0	0	[NT]	[NT]	
Estimated Salinity*	mg/kg	5	Inorg-034	[NT]	19	100	96	4	[NT]	[NT]	

QUALITY CONTR	ROL: vTRH((C6-C10)/E	3TEXN in Water			Dup	olicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W3	[NT]
Date extracted	-			24/11/2022	[NT]	[NT]		[NT]	24/11/2022	
Date analysed	-			25/11/2022	[NT]	[NT]		[NT]	25/11/2022	
TRH C ₆ - C ₉	µg/L	10	Org-023	<10	[NT]	[NT]		[NT]	101	
TRH C ₆ - C ₁₀	µg/L	10	Org-023	<10	[NT]	[NT]		[NT]	101	
Benzene	µg/L	1	Org-023	<1	[NT]	[NT]		[NT]	98	
Toluene	µg/L	1	Org-023	<1	[NT]	[NT]		[NT]	104	
Ethylbenzene	µg/L	1	Org-023	<1	[NT]	[NT]		[NT]	106	
m+p-xylene	µg/L	2	Org-023	<2	[NT]	[NT]		[NT]	99	
o-xylene	µg/L	1	Org-023	<1	[NT]	[NT]		[NT]	98	
Naphthalene	µg/L	1	Org-023	<1	[NT]	[NT]		[NT]	[NT]	
Surrogate Dibromofluoromethane	%		Org-023	102	[NT]	[NT]		[NT]	101	
Surrogate toluene-d8	%		Org-023	101	[NT]	[NT]		[NT]	106	
Surrogate 4-BFB	%		Org-023	103	[NT]	[NT]		[NT]	99	

QUALITY CON	TROL: svTF	RH (C10-0	C40) in Water			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date extracted	-			22/11/2022	[NT]		[NT]	[NT]	22/11/2022	
Date analysed	-			23/11/2022	[NT]		[NT]	[NT]	23/11/2022	
TRH C ₁₀ - C ₁₄	µg/L	50	Org-020	<50	[NT]		[NT]	[NT]	86	
TRH C ₁₅ - C ₂₈	µg/L	100	Org-020	<100	[NT]		[NT]	[NT]	100	
TRH C ₂₉ - C ₃₆	µg/L	100	Org-020	<100	[NT]		[NT]	[NT]	86	
TRH >C ₁₀ - C ₁₆	µg/L	50	Org-020	<50	[NT]		[NT]	[NT]	86	
TRH >C ₁₆ - C ₃₄	µg/L	100	Org-020	<100	[NT]		[NT]	[NT]	100	
TRH >C ₃₄ - C ₄₀	µg/L	100	Org-020	<100	[NT]		[NT]	[NT]	86	
Surrogate o-Terphenyl	%		Org-020	85	[NT]		[NT]	[NT]	81	

QUALIT	Y CONTROL	.: PAHs ir	n Water			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	310991-25
Date extracted	-			22/11/2022	[NT]		[NT]	[NT]	22/11/2022	22/11/2022
Date analysed	-			23/11/2022	[NT]		[NT]	[NT]	23/11/2022	23/11/2022
Naphthalene	µg/L	1	Org-022/025	<1	[NT]		[NT]	[NT]	92	98
Acenaphthylene	μg/L	1	Org-022/025	<1	[NT]		[NT]	[NT]	[NT]	[NT]
Acenaphthene	μg/L	1	Org-022/025	<1	[NT]		[NT]	[NT]	87	91
Fluorene	µg/L	1	Org-022/025	<1	[NT]		[NT]	[NT]	93	94
Phenanthrene	μg/L	1	Org-022/025	<1	[NT]		[NT]	[NT]	100	99
Anthracene	μg/L	1	Org-022/025	<1	[NT]		[NT]	[NT]	[NT]	[NT]
Fluoranthene	μg/L	1	Org-022/025	<1	[NT]		[NT]	[NT]	106	101
Pyrene	μg/L	1	Org-022/025	<1	[NT]		[NT]	[NT]	103	102
Benzo(a)anthracene	μg/L	1	Org-022/025	<1	[NT]		[NT]	[NT]	[NT]	[NT]
Chrysene	μg/L	1	Org-022/025	<1	[NT]		[NT]	[NT]	89	89
Benzo(b,j+k)fluoranthene	μg/L	2	Org-022/025	<2	[NT]		[NT]	[NT]	[NT]	[NT]
Benzo(a)pyrene	μg/L	1	Org-022/025	<1	[NT]		[NT]	[NT]	84	84
Indeno(1,2,3-c,d)pyrene	μg/L	1	Org-022/025	<1	[NT]		[NT]	[NT]	[NT]	[NT]
Dibenzo(a,h)anthracene	μg/L	1	Org-022/025	<1	[NT]		[NT]	[NT]	[NT]	[NT]
Benzo(g,h,i)perylene	μg/L	1	Org-022/025	<1	[NT]		[NT]	[NT]	[NT]	[NT]
Surrogate p-Terphenyl-d14	%		Org-022/025	93	[NT]		[NT]	[NT]	100	89

QUALITY CONTRO	OL: Organoc	hlorine Pe	esticides in Water			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	310991-25
Date extracted	-			22/11/2022	[NT]		[NT]	[NT]	22/11/2022	22/11/2022
Date analysed	-			23/11/2022	[NT]		[NT]	[NT]	23/11/2022	23/11/2022
alpha-BHC	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	96	99
НСВ	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]		[NT]
beta-BHC	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	99	98
gamma-BHC	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]		[NT]
Heptachlor	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	105	101
delta-BHC	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]		[NT]
Aldrin	μg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	109	104
Heptachlor Epoxide	μg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	108	104
gamma-Chlordane	μg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]		[NT]
alpha-Chlordane	μg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]		[NT]
Endosulfan I	μg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]		[NT]
pp-DDE	μg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	107	108
Dieldrin	μg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	106	104
Endrin	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	100	105
Endosulfan II	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]		[NT]
pp-DDD	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	100	109
Endrin Aldehyde	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]		[NT]
pp-DDT	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]		[NT]
Endosulfan Sulphate	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	102	102
Methoxychlor	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]		[NT]
Surrogate TCMX	%		Org-022/025	84	[NT]		[NT]	[NT]	87	89

QUALITY CC	ONTROL: OF	Pesticid	es in Water			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	310991-25	
Date extracted	-			22/11/2022	[NT]		[NT]	[NT]	22/11/2022	22/11/2022	
Date analysed	-			23/11/2022	[NT]		[NT]	[NT]	23/11/2022	23/11/2022	
Dichlorvos	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	118	112	
Dimethoate	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]	[NT]	
Diazinon	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]	[NT]	
Chlorpyriphos-methyl	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]	[NT]	
Ronnel	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	85	98	
Fenitrothion	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	87	92	
Malathion	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	110	94	
Chlorpyriphos	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	104	102	
Parathion	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	82	88	
Bromophos ethyl	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]	[NT]	
Ethion	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	92	93	
Azinphos-methyl (Guthion)	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]	[NT]	
Surrogate TCMX	%		Org-022/025	84	[NT]		[NT]	[NT]	87	89	

QUALITY	CONTROL	: PCBs in	Water			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	310991-25
Date extracted	-			22/11/2022	[NT]		[NT]	[NT]	22/11/2022	22/11/2022
Date analysed	-			23/11/2022	[NT]		[NT]	[NT]	23/11/2022	23/11/2022
Aroclor 1016	µg/L	2	Org-021	<2	[NT]		[NT]	[NT]		[NT]
Aroclor 1221	µg/L	2	Org-021	<2	[NT]		[NT]	[NT]		[NT]
Aroclor 1232	µg/L	2	Org-021	<2	[NT]		[NT]	[NT]		[NT]
Aroclor 1242	µg/L	2	Org-021	<2	[NT]		[NT]	[NT]		[NT]
Aroclor 1248	µg/L	2	Org-021	<2	[NT]		[NT]	[NT]		[NT]
Aroclor 1254	µg/L	2	Org-021	<2	[NT]		[NT]	[NT]	120	118
Aroclor 1260	µg/L	2	Org-021	<2	[NT]		[NT]	[NT]		[NT]
Surrogate TCMX	%		Org-021	84	[NT]	[NT]	[NT]	[NT]	87	89

QUALITY CON	TROL: Meta	lls in Wate	er - Dissolved			Du	plicate		Spike Red	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date digested	-			23/11/2022	[NT]		[NT]	[NT]	23/11/2022	
Date analysed	-			23/11/2022	[NT]		[NT]	[NT]	23/11/2022	
Arsenic - Dissolved	mg/L	0.05	Metals-020	<0.05	[NT]		[NT]	[NT]	100	
Cadmium - Dissolved	mg/L	0.01	Metals-020	<0.01	[NT]		[NT]	[NT]	92	
Chromium - Dissolved	mg/L	0.01	Metals-020	<0.01	[NT]		[NT]	[NT]	91	
Copper - Dissolved	mg/L	0.01	Metals-020	<0.01	[NT]		[NT]	[NT]	98	
Lead - Dissolved	mg/L	0.03	Metals-020	<0.03	[NT]		[NT]	[NT]	91	
Mercury - Dissolved	mg/L	0.0005	Metals-021	<0.0005	[NT]		[NT]	[NT]	93	
Nickel - Dissolved	mg/L	0.02	Metals-020	<0.02	[NT]		[NT]	[NT]	94	
Zinc - Dissolved	mg/L	0.02	Metals-020	<0.02	[NT]	[NT]	[NT]	[NT]	93	[NT]

QUALITY CON	QUALITY CONTROL: Cations in water Dissolved								Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date digested	-			23/11/2022	[NT]		[NT]	[NT]	23/11/2022	
Date analysed	-			24/11/2022	[NT]		[NT]	[NT]	24/11/2022	
Sodium - Dissolved	mg/L	0.5	Metals-020	<0.5	[NT]	[NT]	[NT]	[NT]	104	[NT]

QUALITY COI	QUALITY CONTROL: Miscellaneous Inorganics							Duplicate			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]	
Date prepared	-			22/11/2022	[NT]		[NT]	[NT]	22/11/2022		
Date analysed	-			22/11/2022	[NT]		[NT]	[NT]	22/11/2022		
рН	pH Units		Inorg-001	[NT]	[NT]		[NT]	[NT]	98		
Salinity as NaCl*	g/L	0.01	Inorg-002	<0.01	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

are similar to the analyte of interest, however are not expected to be found in real samples.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

CERTIFICATE OF ANALYSIS

Work Order	ES2241858	Page	: 1 of 7	
Client	: MOSS ENVIRONMENTAL	Laboratory	: Environmental Division Sy	dney
Contact	: ELIZABETH OGUNSOTE	Contact	: Customer Services ES	
Address	24 Fitzroy St	Address	: 277-289 Woodpark Road S	Smithfield NSW Australia 2164
	Tamworth 2340			
Telephone	:	Telephone	: +61-2-8784 8555	
Project	: J000109	Date Samples Received	: 18-Nov-2022 15:10	ANHUR.
Order number	:	Date Analysis Commenced	: 21-Nov-2022	
C-O-C number	:	Issue Date	: 07-Dec-2022 12:28	
Sampler	: DA, EO			HAC-MRA NATA
Site	:			
Quote number	: EN/333			Accreditation No. 825
No. of samples received	: 1			Accredited for compliance with
No. of samples analysed	: 1			ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ankit Joshi	Senior Chemist - Inorganics	Sydney Inorganics, Smithfield, NSW
Edwandy Fadjar	Organic Coordinator	Sydney Inorganics, Smithfield, NSW
Edwandy Fadjar	Organic Coordinator	Sydney Organics, Smithfield, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key : CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) per the NEPM (2013) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero, for 'TEQ 1/2LOR' are treated as half the reported LOR, and for 'TEQ LOR' are treated as being equal to the reported LOR. Note: TEQ 1/2LOR and TEQ LOR will calculate as 0.6mg/Kg and 1.2mg/Kg respectively for samples with non-detects for all of the eight TEQ PAHs.
- EP080: Where reported, Total Xylenes is the sum of the reported concentrations of m&p-Xylene and o-Xylene at or above the LOR.
- EP068: Where reported, Total Chlordane (sum) is the sum of the reported concentrations of cis-Chlordane and trans-Chlordane at or above the LOR.
- EP068: Where reported, Total OCP is the sum of the reported concentrations of all Organochlorine Pesticides at or above LOR.
- EP075(SIM): Where reported, Total Cresol is the sum of the reported concentrations of 2-Methylphenol and 3- & 4-Methylphenol at or above the LOR.

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	SP-2 0.1	 	
		Samplii	ng date / time	10-Nov-2022 00:00	 	
Compound	CAS Number	LOR	Unit	ES2241858-001	 	
				Result	 	
EA002: pH 1:5 (Soils)						
pH Value		0.1	pH Unit	6.3	 	
EA014 Total Soluble Salts						
Total Soluble Salts		5	mg/kg	47	 	
EA055: Moisture Content (Dried @ 10	5-110°C)					
Moisture Content		1.0	%	24.0	 	
ED093S: Soluble Major Cations						
Sodium	7440-23-5	10	mg/kg	<10	 	
EG005(ED093)T: Total Metals by ICP-						
Arsenic	7440-38-2	5	mg/kg	7	 	
Cadmium	7440-43-9	1	mg/kg	<1	 	
Chromium	7440-47-3	2	mg/kg	15	 	
Copper	7440-50-8	5	mg/kg	31	 	
Lead	7439-92-1	5	mg/kg	15	 	
Nickel	7440-02-0	2	mg/kg	15	 	
Zinc	7440-66-6	5	mg/kg	64	 	
EG035T: Total Recoverable Mercury	by FIMS					
Mercury	7439-97-6	0.1	mg/kg	<0.1	 	
EP066: Polychlorinated Biphenyls (P	CB)					
Total Polychlorinated biphenyls		0.1	mg/kg	<0.1	 	
EP068A: Organochlorine Pesticides (OC)					
alpha-BHC	319-84-6	0.05	mg/kg	<0.05	 	
Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	 	
beta-BHC	319-85-7	0.05	mg/kg	<0.05	 	
gamma-BHC	58-89-9	0.05	mg/kg	<0.05	 	
delta-BHC	319-86-8	0.05	mg/kg	<0.05	 	
Heptachlor	76-44-8	0.05	mg/kg	<0.05	 	
Aldrin	309-00-2	0.05	mg/kg	<0.05	 	
Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	 	
^ Total Chlordane (sum)		0.05	mg/kg	<0.05	 	
trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	 	
alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	 	
cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	 	
Dieldrin	60-57-1	0.05	mg/kg	<0.05	 	
4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	 	

Page : 4 of 7 Work Order : ES2241858 Client : MOSS ENVIRONMENTAL Project : J000109

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	SP-2 0.1	 	
		Samplii	ng date / time	10-Nov-2022 00:00	 	
Compound	CAS Number	LOR	Unit	ES2241858-001	 	
				Result	 	
EP068A: Organochlorine Pesticide	s (OC) - Continued					
Endrin	72-20-8	0.05	mg/kg	<0.05	 	
beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	 	
^ Endosulfan (sum)	115-29-7	0.05	mg/kg	<0.05	 	
4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	 	
Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	 	
Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	 	
4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	 	
Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	 	
Methoxychlor	72-43-5	0.2	mg/kg	<0.2	 	
^ Sum of Aldrin + Dieldrin	309-00-2/60-57-1	0.05	mg/kg	<0.05	 	
^ Sum of DDD + DDE + DDT	72-54-8/72-55-9/5	0.05	mg/kg	<0.05	 	
	0-2					
EP068B: Organophosphorus Pesti	cides (OP)					
Dichlorvos	62-73-7	0.05	mg/kg	<0.05	 	
Demeton-S-methyl	919-86-8	0.05	mg/kg	<0.05	 	
Monocrotophos	6923-22-4	0.2	mg/kg	<0.2	 	
Dimethoate	60-51-5	0.05	mg/kg	<0.05	 	
Diazinon	333-41-5	0.05	mg/kg	<0.05	 	
Chlorpyrifos-methyl	5598-13-0	0.05	mg/kg	<0.05	 	
Parathion-methyl	298-00-0	0.2	mg/kg	<0.2	 	
Malathion	121-75-5	0.05	mg/kg	<0.05	 	
Fenthion	55-38-9	0.05	mg/kg	<0.05	 	
Chlorpyrifos	2921-88-2	0.05	mg/kg	<0.05	 	
Parathion	56-38-2	0.2	mg/kg	<0.2	 	
Pirimphos-ethyl	23505-41-1	0.05	mg/kg	<0.05	 	
Chlorfenvinphos	470-90-6	0.05	mg/kg	<0.05	 	
Bromophos-ethyl	4824-78-6	0.05	mg/kg	<0.05	 	
Fenamiphos	22224-92-6	0.05	mg/kg	<0.05	 	
Prothiofos	34643-46-4	0.05	mg/kg	<0.05	 	
Ethion	563-12-2	0.05	mg/kg	<0.05	 	
Carbophenothion	786-19-6	0.05	mg/kg	<0.05	 	
Azinphos Methyl	86-50-0	0.05	mg/kg	<0.05	 	
EP075(SIM)B: Polynuclear Aromati	c Hydrocarbons					
Naphthalene	91-20-3	0.5	mg/kg	<0.5	 	

Page : 5 of 7 Work Order : ES2241858 Client : MOSS ENVIRONMENTAL Project : J000109

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	SP-2 0.1					
		Samplii	ng date / time	10-Nov-2022 00:00					
Compound	CAS Number	LOR	Unit	ES2241858-001					
				Result					
EP075(SIM)B: Polynuclear Aromatic	Hydrocarbons - Cont	inued							
Acenaphthylene	208-96-8	0.5	mg/kg	<0.5					
Acenaphthene	83-32-9	0.5	mg/kg	<0.5					
Fluorene	86-73-7	0.5	mg/kg	<0.5					
Phenanthrene	85-01-8	0.5	mg/kg	<0.5					
Anthracene	120-12-7	0.5	mg/kg	<0.5					
Fluoranthene	206-44-0	0.5	mg/kg	<0.5					
Pyrene	129-00-0	0.5	mg/kg	<0.5					
Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5					
Chrysene	218-01-9	0.5	mg/kg	<0.5					
Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5					
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5					
Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5					
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5					
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5					
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5					
^ Sum of polycyclic aromatic hydrocarbo	ns	0.5	mg/kg	<0.5					
^ Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5					
^ Benzo(a)pyrene TEQ (half LOR)		0.5	mg/kg	0.6					
^ Benzo(a)pyrene TEQ (LOR)		0.5	mg/kg	1.2					
EP080/071: Total Petroleum Hydroca	rbons								
C6 - C9 Fraction		10	mg/kg	<10					
C10 - C14 Fraction		50	mg/kg	<50					
C15 - C28 Fraction		100	mg/kg	<100					
C29 - C36 Fraction		100	mg/kg	<100					
^ C10 - C36 Fraction (sum)		50	mg/kg	<50					
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions									
C6 - C10 Fraction	C6_C10	10	mg/kg	<10					
[^] C6 - C10 Fraction minus BTEX	C6_C10-BTEX	10	mg/kg	<10					
(F1)									
>C10 - C16 Fraction		50	mg/kg	<50					
>C16 - C34 Fraction		100	mg/kg	<100					
>C34 - C40 Fraction		100	mg/kg	<100					
^ >C10 - C40 Fraction (sum)		50	mg/kg	<50					

Page	: 6 of 7
Work Order	: ES2241858
Client	: MOSS ENVIRONMENTAL
Project	: J000109

Sub-Matrix: SOIL (Matrix: SOIL)				SP-2 0.1					
	Sampling date / time			10-Nov-2022 00:00					
Compound	CAS Number	LOR	Unit	ES2241858-001					
				Result					
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions - Continued									
 ^ >C10 - C16 Fraction minus Naphthalen (F2) 	ie	50	mg/kg	<50					
EP080: BTEXN									
Benzene	71-43-2	0.2	mg/kg	<0.2					
Toluene	108-88-3	0.5	mg/kg	<0.5					
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5					
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5					
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5					
^ Sum of BTEX		0.2	mg/kg	<0.2					
^ Total Xylenes		0.5	mg/kg	<0.5					
Naphthalene	91-20-3	1	mg/kg	<1					
EP066S: PCB Surrogate									
Decachlorobiphenyl	2051-24-3	0.1	%	93.5					
EP068S: Organochlorine Pesticide S	Surrogate								
Dibromo-DDE	21655-73-2	0.05	%	102					
EP068T: Organophosphorus Pestici	de Surrogate								
DEF	78-48-8	0.05	%	53.1					
EP075(SIM)S: Phenolic Compound S									
Phenol-d6	13127-88-3	0.5	%	85.0					
2-Chlorophenol-D4	93951-73-6	0.5	%	86.0					
2.4.6-Tribromophenol	118-79-6	0.5	%	91.7					
EP075(SIM)T: PAH Surrogates									
2-Fluorobiphenyl	321-60-8	0.5	%	85.0					
Anthracene-d10	1719-06-8	0.5	%	96.8					
4-Terphenyl-d14	1718-51-0	0.5	%	87.0					
EP080S: TPH(V)/BTEX Surrogates									
1.2-Dichloroethane-D4	17060-07-0	0.2	%	86.9					
Toluene-D8	2037-26-5	0.2	%	93.3					
4-Bromofluorobenzene	460-00-4	0.2	%	89.2					

Surrogate Control Limits

Sub-Matrix: SOIL		Recovery	Limits (%)
Compound	CAS Number	Low	High
EP066S: PCB Surrogate			
Decachlorobiphenyl	2051-24-3	39	149
EP068S: Organochlorine Pesticide Surrogate	e		
Dibromo-DDE	21655-73-2	49	147
EP068T: Organophosphorus Pesticide Surro	gate		
DEF	78-48-8	35	143
EP075(SIM)S: Phenolic Compound Surrogate	es		
Phenol-d6	13127-88-3	63	123
2-Chlorophenol-D4	93951-73-6	66	122
2.4.6-Tribromophenol	118-79-6	40	138
EP075(SIM)T: PAH Surrogates			
2-Fluorobiphenyl	321-60-8	70	122
Anthracene-d10	1719-06-8	66	128
4-Terphenyl-d14	1718-51-0	65	129
EP080S: TPH(V)/BTEX Surrogates			
1.2-Dichloroethane-D4	17060-07-0	73	133
Toluene-D8	2037-26-5	74	132
4-Bromofluorobenzene	460-00-4	72	130

 😂 admin@mossenviro.com

- 🔁 www.mossenviro.com
- ♠ PO Box 390, Tamworth NSW 2340

APPENDIX E – LOGIT DIGITAL SOIL LOGS

	SS NTAL	Client:CSO EngineersBORINProject:Arcadia EstateBoring No.SP-AAddress:Burgmann's Lane Warral, Tamworth NSW, AustraliaPage:1 of 1	G LO(3				
Drilling Start Date:16/11/2022 14:Drilling End Date:16/11/2022Drilling Company:Moss EnvironDrilling Method:Direct PushDrilling Equipment:Hand AugerDriller:Dasuni AlgiriyLogged By:Elizabeth Ogu	mental age	Boring Depth (m):0.15Boring Diameter (mm):80.00Sampling Method(s):Direct PushDTW During Drilling (m):N/ADTW After Drilling (m):0.15Ground Surface Elev. (m):Grassy areas on surfaceLocation (Lat, Long):-31.12582, 150.89209						
DEPTH (m) LITHOLOGY WATER LEVEL BORING COMPLETION Sample Type Time	Blow Counts D Recovery (m)	SOIL/ROCK VISUAL DESCRIPTION	MEA: (mdd) OId	Lab Sample	DEPTH (m)			
0 DP 14:22 DP 14:22 1 1 NOTES: Hole precleared to		(0m) Topsoil (0.05m) Lean CLAY with sand (CL); little medium-coarse sand, trace silt, mostly clay, nonplastic, soft, dry, light brown (0.15m) Light brown soil, dry, clay soil, lean clay. A bit of fine and coarse, muddy towards bore depth		SP-A	0			

ĺ							Client: Project: Address:	CSO Eng Arcadia Burgmar NSW, Au	Estate In's Lane Warral, Tarr	worth	Boring No.	BORING SP-B 1 of 1	G LOC	9	
Drilling Drilling Drilling Drilling Driller:	Drilling Start Date: 16/11/2022 Drilling End Date: 16/11/2022 Drilling Company: Moss Environmental Drilling Method: Direct Push Drilling Equipment: Hand Auger Driller: Dasuni Algiriyage Logged By: Elizabeth Ogunsote								Boring Depth (m): Boring Diameter (mm): Sampling Method(s): DTW During Drilling (m) DTW After Drilling (m): Ground Surface Elev. (Location (Lat, Long):	Dire n): N/A 0.1! (m): Gra	00 ect Push 5	1			
DEPTH (m)	ГІТНОГОЄУ	WATER LEVEL BORING	Sample Type	Lime	Blow Counts	Recovery (m)		S	DIL/ROCK VISUAL DESCRI	PTION			MEAS (mdd) OId	Lab Sample	DEPTH (m)
0 1	NOTES	Field	DP	Dark	brow	n soil,	(0.15m) As Ab	k brown	nd (MH); few fine sand, som			sticity,		SP-B	0
			.0100.	Curk	2.000	501,	olot, only oldy	c, con, no g	and, poony graded, no re						

	DSS Imental	Client:CSO EngineersBORIProject:Arcadia EstateBoring No.SP-0Address:Burgmann's Lane Warral, Tamworth NSW, AustraliaPage:1 of		3			
Drilling Start Date:15/11/202Drilling End Date:15/11/202Drilling Company:Moss EnvDrilling Method:Direct PuDrilling Equipment:Hand AugDriller:Dasuni ALogged By:Elizabeth	2 vironmental sh ger	Boring Depth (m): 0.15 Boring Diameter (mm): 80.00 Sampling Method(s): Direct Push DTW During Drilling (m): N/A DTW After Drilling (m): N/A Ground Surface Elev. (m): Grassy surface on top soil Location (Lat, Long): -31.12723, 150.89837					
DEPTH (m) LITHOLOGY WATER LEVEL BORING COMPLETION Sample Type	Time Blow Counts Recovery (m)	SOIL/ROCK VISUAL DESCRIPTION	MEAS (mdd) OIA	Lab Sample	DEPTH (m)		
	99:45	(0m) Topsoil (0.05m) Poorly graded GRAVEL with clay (GP-GC); some fine-coarse grained gravel, trace fine sand, little clay, dense, moist, black (0.09m) As Above (0.15m) Surface soil collected. Boring terminated		SP-C	0		

	Client: CSO Engineers Project: Arcadia Estate Address: Burgmann's Lane Warral, Tamworth NSW, Australia	BORING LOG Boring No. SP-D Page: 1 of 1				
Drilling Start Date:15/11/2022Drilling End Date:15/11/2022Drilling Company:Moss EnvironmentalDrilling Method:Direct PushDrilling Equipment:Hand AugerDriller:Dasuni AlgiriyageLogged By:Elizabeth Ogunsote	Boring Depth (m):0.15Boring Diameter (mm):80.00Sampling Method(s):Direct PushDTW During Drilling (m):N/ADTW After Drilling (m):N/AGround Surface Elev. (m):Grassy, dry soil surfaceLocation (Lat, Long):-31.12769, 150.90132					
DEPTH (m) LITHOLOGY WATER LEVEL BORING COMPLETION Sample Type Time Blow Counts Recovery (m)	SOIL/ROCK VISUAL DESCRIPTION	PID (ppm) MEASURE Lab Sample DEPTH (m)				
	(0m) Topsoil (0.03m) Poorly graded SAND with gravel (SP); some coarse gra gravel, trace silt, loose, dry, light yellowish-brown (0.1m) As Above (0.15m) Surface soil collected boring completed	ained sand, little coarse				
1 NOTES: A Jarrett's hand auger was us	ed for sample collection	1				

		Client:CSO EngineersBORINProject:Arcadia EstateBoring No. SP-EAddress:Burgmann's Lane Warral, Tamworth NSW, AustraliaPage: 1 of 1		3	
	022 nvironmer ush	Boring Depth (m):0.15Boring Diameter (mm):80.00Sampling Method(s):Direct PushDTW During Drilling (m):N/ADTW After Drilling (m):0.15Ground Surface Elev. (m):GrassyLocation (Lat, Long):-31.12796, 150.90465			
DEPTH (m) LITHOLOGY WATER LEVEL BORING COMPLETION Sample Type	LOTIOD Blow Counts	SOIL/ROCK VISUAL DESCRIPTION	MEA: (mdd) OId	Lab Sample	DEPTH (m)
		(0m) Topsoil (0.03m) Well-graded SAND with gravel (SW); some fine-medium grained sand, little coarse gravel, few clay, loose, dry, light reddish-brown (0.15m) Boring terminated		SP-E	0

	DSS	Clier Proje Addu		CSO Engine Arcadia Est Burgmann's NSW, Austr	tate s Lane Warral, Tamworth	BORING Boring No. SP-F Page: 1 of 1	LOC	3	
Drilling Start Date:15/11/202Drilling End Date:15/11/202Drilling Company:Moss EnvDrilling Method:Direct PuDrilling Equipment:Hand AugDriller:Dasuni ALogged By:Elizabeth	2 vironment sh ger		Boring Depth (m):0.15Boring Diameter (mm):80.00Sampling Method(s):Direct PushDTW During Drilling (m):N/ADTW After Drilling (m):N/AGround Surface Elev. (m):Grassy, moist surfaceLocation (Lat, Long):-31.13153, 150.90372						
DEPTH (m) LITHOLOGY WATER LEVEL BORING COMPLETION Sample Type	Time Blow Counts	Recovery (m)		SOIL	ROCK VISUAL DESCRIPTION		MEAS (mdd) OId	Lab Sample	DEPTH (m)
		(0.05n soft, m (0.1m) sand,	moist, very n) Poorly g trace silt, m) Sample	/ dark black raded GRAVEL trace clay, loos	ace fine sand, some silt, little clay (GP); some coarse grained grave e, slightly moist, very dark black pth. Auger resistance due to pres	el, few fine-medium		SP-F	0

		SS	Client:CSO EngineersBORINProject:Arcadia EstateBoring No.SP-GAddress:Burgmann's Lane Warral, Tamworth NSW, AustraliaPage:1 of 7		G	
Drilling Method: D Drilling Equipment: J Driller: D	5/11/2022 loss Environ irect Push	auger age	Boring Depth (m):0.22Boring Diameter (mm):0Sampling Method(s):Direct PushDTW During Drilling (m):N/ADTW After Drilling (m):N/AGround Surface Elev. (m):Hoist surface, GrassyLocation (Lat, Long):-31.13122, 150.90110			
DEPTH (m) LITHOLOGY WATER LEVEL BORING	COMPLETION Sample Type Time	Blow Counts D Recovery (m)	SOIL/ROCK VISUAL DESCRIPTION	MEA (mdd) OIA	SURE	DEPTH (m)
	DP		(0m) Topsoil (0.05m) Sandy elastic SILT (MH); trace fine-medium sand, few silt, trace clay, low plasticity, soft, moist, dark brown (0.1m) Fat CLAY with sand (CH); trace fine sand, some clay, low plasticity, soft, wet, very dark brown (0.15m) Fat CLAY (CH); trace silt, mostly clay, medium plasticity, very soft, saturated, dark greenish-black (0.2m) As Above (0.22m) Boring terminated Triplicate sample SP-2 collected at depth		SP-2	0

	OSS Inmenta	Clien Proje L Addr	ect: Arc Bur	O Engine cadia Esta rgmann's W, Austra	ate Lane Warral, Tamworth	BORING Boring No. SP-H Page: 1 of 1	G LO(3	
	022 nvironment ush	er	Boring Depth (m): 0.15 Boring Diameter (mm): 80.00 Sampling Method(s): Direct Push DTW During Drilling (m): N/A DTW After Drilling (m): N/A Ground Surface Elev. (m): Loose and moist soil on surface Location (Lat, Long): -31.13070, 150.89789						
DEPTH (m) LITHOLOGY WATER LEVEL BORING COMPLETION Sample Type	Time Blow Counts	Recovery (m)		SOIL/F	ROCK VISUAL DESCRIPTION		MEAS (mqq) OIA	Lab Sample	DEPTH (m)
	09:00	(0.1m) (0.1m) (0.14m	n) Well-graded m dense, mois	st, light greer d SAND with k greenish-b	a silt (SP-SM); trace coarse grair			SP-H	0

		Project: Arc	O Engineers adia Estate rgmann's Lane Warral, Tamworth W, Australia	BORING Boring No. SP-I Page: 1 of 1	G LOG				
Drilling Method: Dir Drilling Equipment: Jai Driller: Da	11/2022 ss Environmen ect Push	ger	Boring Depth (m): 0.15 Boring Diameter (mm): 80.00 Sampling Method(s): Direct Push DTW During Drilling (m): N/A DTW After Drilling (m): N/A Ground Surface Elev. (m): Grassy, loose, moist soil on surface Location (Lat, Long): -31.13014, 150.89429						
DEPTH (m) LITHOLOGY WATER LEVEL COMPIETION	Sample Type Time Blow Counts		SOIL/ROCK VISUAL DESCRIPTION		MEASU (wdd) OId	Lab Sample BU	DEPTH (m)		
		slightly moist, light re (0.1m) Lean CLAY w nonplastic, dry, light r	ith sand (CL); trace medium-coarse sand, reddish-brown ith sand (CH); trace fine-medium sand, littl dark brown	little silt, little clay,		SP-1	_0		

		D L	Client: CSO Engineers Project: Arcadia Estate Borin Address: Burgmann's Lane Warral, Tamworth NSW, Australia	BORING L ng No. SP-J e: 1 of 1	_0G				
Drilling Method: Direct Drilling Equipment: Jarret Driller: Dasur	2022 Environmen Push	er	Boring Depth (m): 0.15 Boring Diameter (mm): 80.00 Sampling Method(s): Direct Push DTW During Drilling (m): N/A DTW After Drilling (m): N/A Ground Surface Elev. (m): Grassy and moist surface Location (Lat, Long): -31.13560, 150.89690						
DEPTH (m) LITHOLOGY WATER LEVEL BORING COMPLETION	Time Diversion of the D	Recovery (m)	SOIL/ROCK VISUAL DESCRIPTION		(mdd) OIA		DEPTH (m)		
			(0m) Topsoil (0.05m) Lean CLAY with sand (CL.); few fine-medium sand, few silt, trac plasticity, soft, slightly moist, light brown (0.1m) Sandy lean CLAY (CL.); little fine sand, little silt, some clay, medi soft, moist, dark black (0.15m) Boring terminated		SP	J	_0		

		Client:CSO EngineersBORINGProject:Arcadia EstateBoring No. SP-LAddress:Burgmann's Lane Warral, Tamworth NSW, AustraliaPage:1 of 1	G LOG	ì				
Drilling Method: Direct Pu Drilling Equipment: Jarrett's I Driller: Dasuni A	22 vironmental Ish hand auger	Boring Depth (m):0.15Boring Diameter (mm):80.00Sampling Method(s):Direct PushDTW During Drilling (m):N/ADTW After Drilling (m):N/AGround Surface Elev. (m):Poorly graded loose soil at surfaceLocation (Lat, Long):-31.13490, 150.90290						
	COLLECT		MEAS	URE	(۲			
DEPTH (m) LITHOLOGY WATER LEVEL BORING COMPLETION Sample Type	Time Blow Counts Recovery (m)	SOIL/ROCK VISUAL DESCRIPTION	PID (ppm)	Lab Sample	DEPTH (m)			
0DP		(0m) Topsoil (0.05m) Fat CLAY with sand (CH); few fine-medium sand, trace silt, little clay, low plasticity, soft, slightly moist, dark black (0.1m) As Above (0.15m) Boring terminated		SP-L	0			

	OSS NMENTA	Client Proje Addre	ct: Arcadia Es		BORING Boring No. SP-M Page: 1 of 1	G LOO	3	
Drilling Method: Direct P Drilling Equipment: Jarrett's Driller: Dasuni A	22 ivironment ush	er		DTW During Drilling (m): N/A DTW After Drilling (m): N/A Ground Surface Elev. (m): Gras	0 ct Push	ce		
DEPTH (m) LITHOLOGY WATER LEVEL BORING COMPLETION Sample Type	Time Blow Counts	Recovery (m)	SOIL	/ROCK VISUAL DESCRIPTION		MEAS (mdd) OIA	Lab Sample	DEPTH (m)
	14:10	(0.01m) dark bla (0.1m) plasticit	(0m) Topsoil (0.01m) Fat CLAY (CH); little fine sand, mostly clay, high plasticity, medium stiff, moist, dark black (0.1m) Fat CLAY with sand (CH); trace fine sand, little silt, mostly clay, medium plasticity, medium stiff, moist, dark black (0.15m) Boring terminated				SP-M	0

	OSS	Client:CSO EngineersProject:Arcadia EstateBoring No.Address:Burgmann's Lane Warral, Tamworth NSW, AustraliaPage:	BORING LOG SP-N 1 of 1
)22 nvironmental rush	Boring Depth (m):0.15Boring Diameter (mm):80.00Sampling Method(s):Direct PushDTW During Drilling (m):N/ADTW After Drilling (m):N/AGround Surface Elev. (m):Moist sandy soil aLocation (Lat, Long):-31.13760, 150.900	
DEPTH (m) LITHOLOGY WATER LEVEL BORING COMPLETION Sample Type	Time Blow Counts Recovery (m)	SOIL/ROCK VISUAL DESCRIPTION	PID (ppm) MEVARAMPIE Lab Sample DEPTH (m)
		(0m) Topsoil (0.03m) Sandy lean CLAY (CL); few medium sand, trace silt, mostly clay, mediu plasticity, soft, moist, light yellowish-brown (0.1m) Lean CLAY with sand (CL); few medium sand, few silt, some clay, mediu plasticity, soft, moist, light yellowish-brown (0.15m) Boring terminated	

	SS TAL	Client:CSO EngineersBORIProject:Arcadia EstateBoring No.SP-0Address:Burgmann's Lane Warral, Tamworth NSW, AustraliaPage:1 of		3	
Drilling Start Date:16/11/2022Drilling End Date:16/11/2022Drilling Company:Moss EnvironmDrilling Method:Direct PushDrilling Equipment:Jarrett's Hand aDriller:Dasuni AlgiriyaLogged By:Elizabeth Ogun	uger ge	Boring Depth (m):0.15Boring Diameter (mm):80.00Sampling Method(s):Direct PushDTW During Drilling (m):N/ADTW After Drilling (m):N/AGround Surface Elev. (m):Grassy and moist surfaceLocation (Lat, Long):-31.13720, 150.89730	soil		
DEPTH (m) LITHOLOGY WATER LEVEL BORING COMPLETION Sample Type Time	Blow Counts D Recovery (m)	SOIL/ROCK VISUAL DESCRIPTION	MEA (wdd) OId	Lab Sample	DEPTH (m)
0DP 12:30 DP 12:30 I I I I NOTES: Hole precleared us		(0m) Topsoil (0.03m) Elastic SILT with sand (MH); little medium sand, few slit, few clay, medium plasticity, soft, wet, dark greenish-brown (0.14m) Water retained in profile. No gravel or rocks in soil. Medium dense soil. (0.15m) Boring terminated		SP-0	0

	OSS INMENTAL	Client:CSO EngineersProject:Arcadia EstateBoringAddress:Burgmann's Lane Warral, Tamworth NSW, AustraliaPage:	BORING LOG No. SP-P 1 of 1			
Drilling Start Date: 15/11/2022 Boring Depth (m): 0.15 Drilling End Date: 15/11/2022 Boring Diameter (mm): 80.00 Drilling Company: Moss Environmental Sampling Method(s): Direct Push Drilling Equipment: Jarrett's hand auger DTW After Drilling (m): N/A Driller: Dasuni Algiriyage Ground Surface Elev. (m): Moist surface soil Logged By: Elizabeth Ogunsote Location (Lat, Long): -31.14020, 150.89690						
DEPTH (m) LITHOLOGY WATER LEVEL BORING COMPLETION Sample Type	Time Blow Counts Recovery (m)	SOIL/ROCK VISUAL DESCRIPTION	PID (ppm) MEASAMPle Lab Sample DEPTH (m)			
		. (0m) Topsoil (0.02m) Sandy lean CLAY (CL); little fine sand, few silt, little clay, medium p medium stiff, moist, dark black (0.1m) Lean CLAY (CL); few fine sand, little silt, little clay, medium plasticity stiff, moist, very dark yellowish-black (0.15m) Boring terminated				

	OSS	Client:CSO EngineersBORINGProject:Arcadia EstateBoring No.SP-QAddress:Burgmann's Lane Warral, Tamworth NSW, AustraliaPage:1 of 1	G LOG	ì	
Drilling Method: Direct Drilling Equipment: Jarrett Driller: Dasun	022 Invironmental Push	Boring Depth (m):0.15Boring Diameter (mm):80.00Sampling Method(s):Direct PushDTW During Drilling (m):N/ADTW After Drilling (m):N/AGround Surface Elev. (m):boreholeLocation (Lat, Long):-31.14070, 150.89900	n surro	unding	I
(EL	COLLECT		MEAS	URE	(r
DEPTH (m) LITHOLOGY WATER LEVEL BORING COMPLETION Samole Type	Time Blow Counts Recovery (m)	SOIL/ROCK VISUAL DESCRIPTION	PID (ppm)	Lab Sample	DEPTH (m)
		(0m) Topsoil (0.03m) Poorly graded GRAVEL with silt (GP-GM); trace coarse grained gravel, few medium-coarse sand, trace silt, very loose, dry, dark brown (0.1m) As Above (0.15m) Boring terminated		SP-Q	0

	OSS Inmenta	Client Projec L Addre	t: Arcadia Estate Boring No. SP-R	G	
Drilling Method: Direct P Drilling Equipment: Jarrett's Driller: Dasuni	22 nvironment ush	er	Boring Depth (m):0.15Boring Diameter (mm):80.00Sampling Method(s):Direct PushDTW During Drilling (m):N/ADTW After Drilling (m):N/AGround Surface Elev. (m):Dry, loose surface soilLocation (Lat, Long):-31.14080, 150.90190		
S F →	COLLECT		MEA	SURE	(
DEPTH (m) LITHOLOGY WATER LEVEL BORING COMPLETION Sample Type	Time Blow Counts	Recovery (m)	SOIL/ROCK VISUAL DESCRIPTION	Lab Sample	DEPTH (m)
		little silt, (0.1m) A	Silty GRAVEL with sand (GM); some coarse grained gravel, little medium sand, trace clay, loose, dry, black	SP-R	0

	LOSS RONMENTAL	Client:CSO EngineersBORINGProject:Arcadia EstateBoring No.SP-SAddress:Burgmann's Lane Warral, Tamworth NSW, AustraliaPage:1 of 1	G LOG	
Drilling Method: Direct Drilling Equipment: Jarred Driller: Dast	l/2022 s Environmental ct Push	Boring Depth (m):0.15Boring Diameter (mm):80.00Sampling Method(s):Direct PushDTW During Drilling (m):N/ADTW After Drilling (m):N/AGround Surface Elev. (m):Wet top soilLocation (Lat, Long):-31.13220, 150.89780		
DEPTH (m) LITHOLOGY WATER LEVEL BORING COMPLETION	Sample Type Time Blow Counts Recovery (m)	SOIL/ROCK VISUAL DESCRIPTION	PID (ppm) Lab Sample	DEPTH (m)
	DP 10:50	(0m) Topsoil (0.03m) Sandy SILT (ML) with gravel; little fine-coarse gravel, little fine-medium sand, mostly silt, trace clay, medium plasticity, soft, wet, light brown (0.05m) Water present in profile (0.1m) Lean CLAY with sand (CL); few fine-medium sand, few silt, little clay, medium plasticity, soft, wet, light brown (0.15m) Boring terminated	SP-S	

	OSS Inmenta	L	Project: Arcadia Estate Boring No. Si	RING LOO P-T of 1	3	
)22 nvironmen ush	er	Boring Depth (m):0.15Boring Diameter (mm):0.15Sampling Method(s):Direct PushDTW During Drilling (m):N/ADTW After Drilling (m):N/AGround Surface Elev. (m):Dry loose soil at surfaceLocation (Lat, Long):-31.12720, 150.90510			
DEPTH (m) LITHOLOGY WATER LEVEL BORING COMPLETION Sample Type	Time Blow Counts	Recovery (m)	SOIL/ROCK VISUAL DESCRIPTION	MEA: (wdd) OId	Tab Sample	DEPTH (m)
	12:00		(0m) Topsoil (0.01m) Silty SAND with gravel (SM); little medium grained sand, little fine-coarse gravel, few silt, very loose, dry, light reddish-brown (0.1m) Poorly graded GRAVEL (GP); mostly coarse grained gravel, trace fine-medium sand, few silt, very loose, dry (0.15m) Boring terminated Auger resistance to rock at bore depth		SP-T	0

		SS ITAL	Client:CSO EngineersBORIProject:Arcadia EstateBoring No.SP-7Address:Burgmann's Lane Warral, Tamworth NSW, AustraliaPage:1 of		G	
Drilling Method: Di Drilling Equipment: Ja Driller: Da	5/11/2022 oss Environn irect Push	auger age	Boring Depth (m):0.15Boring Diameter (mm):80.00Sampling Method(s):Direct PushDTW During Drilling (m):N/ADTW After Drilling (m):N/AGround Surface Elev. (m):Grassy surfaceLocation (Lat, Long):-31.12580, 150.90530			
DEPTH (m) LITHOLOGY WATER LEVEL BORING	Sample Type Time	Blow Counts T Recovery (m)	SOIL/ROCK VISUAL DESCRIPTION	MEA (wdd) Old	Lab Sample	DEPTH (m)
	DP 12:15		(0m) Topsoil (0.01m) Well-graded SAND with gravel (SW); mostly medium grained sand, some coarse gravel, little silt, loose, slightly moist, brown (0.05m) Poorly graded GRAVEL (GP); little fine-coarse grained gravel, trace fine-medium sand, loose, slightly moist, brown (0.1m) As Above:presence of rocks along soil profile (0.15m) Boring terminated		SP-T2	0

BORING AND WELL LOG LEGEND

ENVIRONMENTAL		
<pre>View Provide Prov</pre>	I I I I I I I I I I I I I I I I I I I	Volume Descriptors Trace = 5% Few = 5-10% Little = 15-25% Some = 30-45% Mostly = ==50% Mater Level at End of Drilling/in Completed Well Mater Level at End of Drilling/in Completed Well Mell/Boring Completion Cap Riser Screen End Plug Annular Seal Sanitary Seal (Bentonite Slurry/Chips/Pellets/Powder, Other) Filter Pack (Sand, Gravel, Other) Backfill Backfill Encore Split Spoon Shelby Tube Core Barrel Direct Push Lab Sample and ID